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ABSTRACT 
 

In the restricted problem of three bodies, the motion of the primaries must satisfy the differential 
equations which describe the dynamics of two bodies problem. Consequently, the primaries might 
describe elliptic orbits. One purpose in this work is to study when the primaries describe elliptic 
orbits. The generalization of this case is not trivial: while the restricted circular problem of three 
bodies still possesses the jacobi integral, the elliptic problem does not. This property of the elliptic 
problem distinguishes it from the circular problem and indicates the increased degree of difficulty 
involved in solving it. In this work we show how the two-dimensional elliptic problem can be 
formulated and numerical simulations in the pulsating coordinates system show the eccentricity effect 
in the dynamics of coorbital systems.  
 

INTRODUCTION 
 

When the general motion's behavior of a particle near the Lagrangian equilibrium points is studied, 
more precisely, the horseshoe and tadpole orbits, in a great number of cases it is done using the 
circular restricted three-body problem. This case, when the primaries move on circles, gives a general 
definition with the purpose of simplifying its development. However, it is a particular case and to do a 
more realistic study, elliptical motion of the primaries must be introduced. The case called “elliptic 
restricted problem”, when the primaries move on ellipses is the main subject of this work. 
 

EQUATIONS OF MOTION 
 

The differential equations of motion of the circular restricted three-body problem are deduced using a 
uniformly rotating Cartesian rectangular coordinates system. In this system, the primaries are fixed 
and the Hamiltonian does not depend explicitly on the time (Szebehely, 1967, Murray & Dermott, 
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1999). When the primaries move on elliptic orbits, an uniformly rotating and pulsating system can be 
introduced, which results again in fixed locations for the primaries. The Hamiltonian, however, does 
depend explicitly on the independent variable in this case. Such a pulsating coordinate might be 
introduced by using the variable distance between the primaries as the basic length of the system by 
which distances are divided. The following dimensionless variables are introduced by using the 
distance between the primaries 
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where a  and e  are the semi major axis and the eccentricity of the elliptic orbit of either primary 
around the other and f  is the true anomaly. Now, we introduce a coordinate system, which rotates 
with the variable angular velocity f& . This angular motion is given by 
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where *t  is the dimensional time, m1 and m2 are the masses of the primaries and k is the gravitacional 
constant . This equation follows from the principle of the conservation of angular momentum. In the 
two bodies problem formed by the masses 1m  and 2m  this principle is given by 
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Szebehely (1967) shows that the equations of motion in the elliptic restricted problem using the true 
anomaly as independent variable may be written as 
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where ηξς i+= ,  i = 1-   and ξ , η  are the pulsating dimensionless coordinates of the third body in 
the non-uniformly rotating coordinates system and  
 

                                    
fecos1+

Ω
=ω                                                            ( 4 ) 



 59

 
Where 
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The equations of motion ( 3 ) show complete formal identity with the equation describing the 
restricted problem. The function ω , however, shows that this identity is restricted only to the form but 
not to the contents of the equations. Therefore, the function ω  depends on the coordinates as well as 
on the independent variable f , while Ω  depends only on the coordinates. 
 

ECCENTRICITY EFFECTS ON THE STABILITY 
 OF TADPOLE AND HORSESHOES ORBITS 

 
The object of the numerical simulations is to study the behavior of tadpole and horseshoes orbits, 
when an asteroid motion is started near the Lagrangian points L3, L4 and L5. For the simulations, a 
pulsating dimensionless coordinates system ( ξ , η  ) is chosen, with Jupiter's coordinates 1ς  = (µ , 0) 
and Sun's coordinates 2ς  = ( 1−µ ,0), where µ  = )/( 212 mmm + . Here, 2m  is the mass of the Sun and 

1m  of Jupiter, with 121 =+ mm . 
 
If we take 

ηξς irz +== /  
 

 
the equations of the motion for ( ξ , η  ) become 
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where  )cos1/()1( 2 feear +−=  and  the positions of the primaries are µξς == 11   for Jupiter  and 

122 −== µξς   for the Sun. 

We take 00095388.01 =m  for the simulations and 1r  represents the Jupiter-Asteroid distance and 2r  
represents the Sun-Asteroid distance. 
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The center of mass is the origin of the system. 
Therefore, the coordinates of the primaries and the Lagrangian points L3, L4 and L5 are 
 

L3 = (-1, 00039745, 0)                                       L4 = (0,49904612, 0,86602540) 
       L5 = (0,49904612, -0,86602540)                       Sun = (-0,00095388, 0) 
       Jupiter = (0,99904612, 0) 

 
The motions of asteroids about the Lagrangian points L5, L4, L3 are shown with the initial conditions 
specified in Figures 1 to 7.  

      
 

Figure 1:   Asteroid's orbit about the L5 equilibrium point with the starting conditions 05.0−=ξ&  
      and 1.0=η& . The eccentricity of the left's graphic is e = 0.0 and for the one of the right is  e = 0.0489. 

 

       
 

Figure 2:  Asteroid's orbit about the L5 equilibrium point with the starting conditions 05.0−=ξ&  
and 1.0=η& . The eccentricity of the left's graphic is e = 0.1 and for the one of the right is e = 0.2. 
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Figure 3:  Asteroid's orbit about the L4 equilibrium point with the starting conditions 05.0=ξ&   
                      and 1.0=η& . The eccentricity of the left's graphic is e = 0.0 and for the one of the right  

                                       is e = 0.0489. 
 

 
 
 

Figure 4:  Asteroid's orbit about the L4 equilibrium point with the starting conditions 05.0=ξ&   
                     and 1.0=η& . The eccentricity of the left's graphic is e = 0.1 and for the one of the right  is  e = 0.2. 

 
 
The trajectories shown in Figure1 have been started with a low eccentricity closer to L5. While in 
Figure 2 the eccentricity has been increased from 0.1 to 0.2. Note that in each case the path is more 
elongated toward L3 point . Furthermore, in Figure 1 the orbit extends over 90o ; the orbit which was 
started with the eccentricity of the order of  0.2 , shown in Figure 2 , extends over 160o. The 
trajectories of an asteroid , closer to L4, in Figure 3 and Figure 4 have the similar behavior as those 
shown in Figure 1 and Figure 2 . They seem to have a symmetric distribution along the ξ -axis. 
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Figure 5:   Asteroid's orbit about the L3 equilibrium point with the starting conditions 0=f , 

                      05.0=ξ&  and 1.0=η& . The eccentricity of the left's graphic is e = 0.0 and for the one of  the  right is 
                       e = 0.0489. 

 
 

Figure 6:   Asteroid's orbit about the L3 equilibrium point with the eccentricity of order of Jupiter. 
                             The starting conditions of the left's graphic are 0=f , 001.0=ξ&  and 001.0−=η&  and for  

                              the one of the right are π=f , 001.0−=ξ&  and 001.0−=η&  . 

 
The question now as to what kind of orbit would we expect if we increase the initial distance from L4 
point or L5 point even more? The resulting orbit will compass both L4 and L5. These are referred to 
as horseshoe orbits and two examples are shown in Figure 5 when the eccentricity is zero and in 
Figure 6 with the eccentricity of order of Jupiter. When the eccentricity is non-zero, the libration 
amplitude of the horseshoe orbit is larger. If we change the initial conditions of velocity and  f  values, 
the path is less elongated and the asteroid’s orbit librates about L5 point in Figure 5 and about L4 
point in Figure 6 . Furthermore, the libration amplitude of the orbit about L5 point is smaller and more 
narrow than those of the orbit about L4 point.   
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  Figure 7:   Asteroid's orbit about the L3 equilibrium point with the eccentricity  e = 0.1 and 0=f . 

                            The starting conditions of the left's graphic are 001.0=ξ& , 001.0=η& and  for the  one  of  
                             the  right  are    001.0=ξ&  , 001.0−=η& . 
 
The increase of the eccentricity to a value over 0.1 will leave the asteroid’s orbit not coorbital, as it is 
shown in Figure 7. 
 

CONCLUSION 
 

In this work is shown that in the rotating frame the eccentricity has a notable effect on the asteroid's 
orbit near the Lagrangian points L4, L5, and L3. The eccentricity makes the asteroid's orbit increases 
its libration's amplitude near L4 and L5 points, as is shown in Figures 1 to 4. Therefore, we may 
suppose that the increase of eccentricity makes the orbits less stable, up to a limit, wherever the 
particle will escape. The case more notable of the simulations has happened when the asteroid, 
starting near L3 has been captured under special conditions, with eccentricity of the order of Jupiter's, 
by the L4 and L5 Lagrangian points. Several simulations have been done and when the time is 
increased out of 105, the asteroid's orbit stops librating about L4. So we have a more durable capture 
at L5, even if we take the aphelion and not the perihelion as initial condition, as shows Peale (1993) 
suppositions. Therefore, a non zero eccentricity for Jupiter's orbit increases the stability of asteroids at 
L5 while decreases the stability at L4. 
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