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ABSTRACT 
 

Many of the  recently discovered extrasolar planets, present mass 
ratio similar to Jupiter-Sun system. The aim of this paper is to infer 
regions of stability of satellites in the systems where the primary body 
has the mass of the Sun and the secondary body has the mass of 
Jupiter. Possible stable regions where satellites can survive for long 
time are presented in (a, e) plane. Our model is based on the classical 
planar elliptic restricted problem. An empirical formula which gives 
the limit of stable region is derived.  
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1 - INTRODUCTION 

 
 
In the last years the discovery of planets in other solar systems led to 
the question of whether these planets also have satellites. A 
remarkable feature of the giant planets of our solar system is the 
general architecture in the population of their satellites: all of the 
giant planets have at least two distinct groups. Very close to the 
planet, there is a class of regular satellites (almost planar and 
circular). The second group is formed with small objects with high 
eccentricity and high inclination (usually in retrograde orbits). 
However it is important to emphasize that all of the giant planets of 
our solar system are rather far from the Sun (the closest is Jupiter 
which is about 5.2 AU far). Now, the question that arises is related to 
the stability or possibility to a giant planet host a satellite, in the case 
that the planet is very close to the star. For the time being, a 
significant number of extrasolar planets were discovered very near to 
the star, let’s say, sometimes their perihelia ( aP ) are less than 0.1 
AU. These planets are almost circular. In opposition, there are some 
interesting cases where for larger semimajor axis, the eccentricities 
tend to be high, reaching a maximum of about 0.93 (Murray et al., 
2002). In Figure 1 we present the histogram of the number of 
extrasolar planets (detected until the moment) as a function of the 
semimajor axis, eccentricity and planet's mass. The planet mass MP 
sin iP (iP is the inclination of the orbit with the observer's line of sight) 
is given in terms of Jupiter mass and the semimajor axis in AU. These 
data were obtained from: http://exoplanets.org/planet (California & 
Carnegie Planet Search).  
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Figure 1: Histogram of the number of extrasolar planets  (detected 
until March, 2003) as a function of semimajor axis aP (a and b), 
eccentricity eP  (c) and planet's mass MP sin iP (d). 
 
Up to now, satellites of extrasolar planets were not detected. This is 
due mainly to the instrumental limitations and the adopted techniques. 
Several missions to search for extrasolar planet transits by high-
precision space-based photometry are in the planning stages and will, 
have the capacity of detecting satellites (Sartoretti & Schneider, 
1999).   
 
As mentioned before, due to the characteristics of the detected 
planetary systems it is natural to question which would be the 
possible conditions for the formation of satellites in this context. An 
aspect that can be explored without the need of having a closed theory 
on the formation of satellites is the stability of satellites in advanced 
stages of evolution, where the formation process is almost ended. In 
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this context, the main goal of the present work is to infer the stability 
regions of hypothetical satellites of extrasolar planets. 
 
Holman & Wiegert (1999) investigated in what regions around a 
binary system, can a body orbit the center of mass of the stars (or one 
of the stars) for long time. These authors investigated numerically, the 
orbital stability in the frame of the elliptic restricted three-bodies 
problem. They considered a circular orbit for the third body. 
Empirical expressions that give the critical semimajor axis (ac) as a 
function of the eccentricity (e) and mass ratio (µ) of the binaries are 
developed. Such expressions are derived for binary systems with 
0.0beb0.8 and mass ratio 0.1bmb0.9. The formula for bodies orbiting 
one of the stars is not predicted for the case mz0, however simulations 
at e=0 and in range 0.9bmb1.0 were made and a plot of ac as a 
function of m is  shown. 
 
In the present work we studied only the case m=10-3 and it differs 
from Holman´s work in the sense that here we consider a wide range 
of eccentricities of both bodies, that is, the secondary mass and also 
the particle’s eccentricity. Moreover, from our results we derive an 
expression for the critical stable semimajor axis of the particle as a 
function of the eccentricity of the secondary mass. 
 

 
2 - LIMIT OF THE STABILITY REGION  

 
Very roughly speaking, the idea of the limit of stability can be posed 
in the following way: consider a particle orbiting a planet which in its 
turn orbits a star. If the particle is far enough from the planet, the 
perturbation caused by the star becomes so important, that the particle 
cannot remain orbiting the planet. The region around the planet where 
the particle can survive, for any initial condition, for any time, defines 
a stable boundary and therefore a limit of stability  (see for instance 
Hamilton & Burns, 1991 and Holman  & Wiegert, 1999) 
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We can determine this limit by looking at the outermost regions 
where the majority of orbits are stable. In agreement with Holman & 
Wiegert (1999), in the systems with high mass ratio, the stability limit 
of the body in circular orbit is rstable ∝ f RH, where f  is a constant and 
RH=(m/3)1/3r is the Hill’s radius of the planet.  
 
In the numeric study presented by Hamilton & Burns (1991) the 
boundary of the stability region about asteroids for the case of 
prograde orbits was found to be approximately HR5.0 .  
 
In the present study we obtain a numeric estimate of the value of f, 
considering the following values for the planet: semimajor axis (ap): 
0.1AU, eccentricity ep from 0.0 to 0.8 with ∆e=0.1. For the 
hypothetical satellites, we take: semimajor axis (asat) from 1.1 to 
100RP (RP is the Jupiter’s radius) with ∆a=0.1RP; eccentricity (esat) 
from 0.0 to 0.5 with ∆e=0.01. 
 

3 – NUMERICAL RESULTS 
 
The numeric simulations were made for an interval of 104 planet’s 
orbital periods. The integration was interrupted whenever one of the 
situations appeared: collision between the satellite and the planet, the 
satellite collided with the Sun or satellite’s planetocentric energy 
became positive (escape). The initial conditions of the survived 
satellites for full integration time were stored in a file (plotted in 
figures 2 to 7). These satellites were considered stable. 
 
The numerical results are presented in Figures 2 to 7. There we 
illustrate asat up to 20RP for better graphic visualization of the stable 
region. In those figures the time of escape is represented by a gray 
scale. The collisions are represented by the symbol +.  
 

3.1 – CIRCULAR AND ELLIPTIC CASES 
 

In Figure 2 the orbit of the planet was assumed to be circular. The 
border to the right of the light gray region corresponds to the zero 
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velocity curve associated to L1. Usually satellites escape in a 
maximum time of 320 orbital periods of the planet. Satellites that 
don't escape for this time and they don't collide, have orbits 
considered stables. It is noticed that the stability region extends to 
about 7 planet’s radius what corresponds to approximately half the 
radius of the planet’s Hill's sphere. Therefore, the stability region is 
approximately given by rstability=RH/2. 

 
Figure 2: Time of stability of hypothetical satellites in the space of 
initial conditions of asat versus esat, for the orbit of a circular planet. 
The unit of time is represented by gray scale. The symbol (+) refers to 
collision of the satellite. The border corresponds to the right of the 
light gray region to the zero velocity curve associated to L1. 
 
In Figures 3 and 4 we present the results for elliptic cases where eP 
assume values from 0.0 to 0.8 with ∆e=0.1. In such cases the stability 
region reduces with the increase of the planet’s eccentricity, as 
expected. The relation rstability=RH/2 continues being valid, but now 
RH has to be calculated considering the planet at the pericenter, 
r=aP(1-eP). This is presented in Figure 5, considering the values of ac 
for esat=0, we found an expression for the stability limit given by 

 
                     21135.06805.04947.0 PPstability eeR +−=                        (1) 
 
This expression is given in terms of Hill’s radius units. 
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Figure 3: Time of stability of hypothetical satellites in the space of 
initial conditions  asat versus esat, for the orbit of a planet with eP= 0.1 
to 0.4 . The unit of time is represented by gray scale. The symbol (+) 
refers to a collision of the satellite. 
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Figure 4: Time of stability of hypothetical satellites in the space of 
initial conditions  asat versus esat, for the orbit of a planet with eP= 0.5 
to 0.8 . The unit of time is represented by gray scale. The symbol (+) 
refers to a collision of the satellite. 
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Figure 5: Radial limit of the stability region of hypothetical satellites 
as a  function of eP . The full line is given by equation (1). 
 
It can be noticed in Figure 5 that for the circular case the stability 
region extends to about RH/2, while for the elliptic case it reduces 
with the increase of eP as expected. Our results suggest that for 
eP>0.8 the stability region tends to zero. 
 
These numeric results can be considered for other values of larger 
planet’s semimajor axis and masses, the difference of the results will 
be just a scale factor. In Figure 6 we present the limit of the stability 
region of satellites in terms of  aP. The limits of stability are presented 
for planets with masses 0.1MJ, 1MJ and 10MJ.  The horizontal lines, 
dash and solid,  represent the Roche limit of the planet and the surface 
of the planet, respectively.  As expected, the larger is the planet’s 
mass or semimajor axis, the larger is the stability region. For instance, 
if the planet has mass MP = 0.1MJ and aP = 0.06AU, its stability 
region is confined to Roche’s region. The planet could have satellite, 
but of limited sizes due to the planetary tidal effects. On the other 
hand if this same planet had a mass 10 times larger, its stability region 
would be about twice as larger and this planet could have satellites 
whose size limit would be  larger than in the case with  smaller mass 
of the planet.  
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Figure 6: Stability regions limits of satellites in terms of aP. These 
stability limits are for planets with masses 0.1MJ, 1MJ and 10MJ. The 
horizontal lines, dashed and solid, represent the Roche's limit of the 
planet and surface of the planet, respectively.  
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