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ABSTRACT 
 
The objective of this paper is to analyze the dynamic equations of the rotational motion of an 
artificial satellite in terms of different representations (Euler angles, Andoyer variables and 
quaternion). The external torques are not included in this study. Analytical solutions are 
presented for symmetrical satellites when the equation of motion are described in terms of the 
Andoyer variable or Euler angles and angular velocity. A semi-analytical solution is proposed for 
symmetrical satellite when the equations are described by quaternion. When compared, 
numerical and semi-analytical solutions have a good agreement during the time range 
considered. A numerical solution is presented for no symmetrical satellites  when the motion 
equation are described by angular velocity and quaternion.  

 
INTRODUCTION 

 
The attitude of an artificial satellite represents its orientation in the space and it can be described 
by different forms. In this paper the dynamic equation of the rotational motion are described by 
Euler angles, angular velocity, Andoyer variables and quaternion. The objective of this paper is 
to analyze the spacecraft equations of motion in these three representations, without including 
external torques. Symmetrical and no symmetrical satellites are considered.  
 
Analytical solutions are determined for symmetrical satellites (two principal moments of inertia 
are equal, Ix = Iy) and with the equation of motion described by Andoyer variables or Euler 
angles and angular velocity. The 4th order Runge Kutta method is used to get the numerical 
solution for the equations described by Euler angles and angular velocity.  The dynamic 
equations described by quaternion are complex and a semi-analytical approach is presented for 
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the symmetrical satellite. Comparisons between the analytical and numerical solutions are made 
and it is useful to check the developed numerical program 
 
The equations of motion for no symmetrical satellites ( satellite has different principal moments 
of inertia, zyx III ≠≠ ) are complex and in this paper only a numerical solution is presented.  
 
The behavior of the angular velocity and the spin axis of the satellite is discussed and the 
precession and nutation of the  spin axis are observed.  
 

EQUATIONS OF THE FREE ROTATIONAL MOTION: 
 ANGULAR VELOCITY AND EULER ANGLES  

 
When external torques are not considered, the dynamic equations of the spacecraft rotational 
motion, described by the Euler equations and the kinematic equations,are given by (Moore & 
Pisacane, 1994) : 
 

( ) ( ) ( ) Iz/IyIxqpr;Iy/IxIzrpq;Ix/IzIyrqp −=−=−= &&& ,           (1) 
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where: 
 Ix , Iy , Iz are the principal moments of inertia of the satellite , 
 p, q , r are the components of the spin velocity in the system of principal moment of inertia  
(here it is called satellite system - Oxyz) and 
θ, φ, ψ are sequence ZXZ of  the Euler angles, which related the satellite system and inertial 
system (OXYZ). 
 
For symmetrical satellite the moment of inertia Ix and Iy are equal, and the dynamic equation are 
simplified.  In this case the Eq. (1) can be expressed by (Zanardi, 2000):  
 

0rpkqqkp =−== &&& ,                    (3) 
 
where ( ) Ix/rIzIxk −= . 
 
The solution of the equations system (3)  is given by (Moore & Pisacane, 1994):  
 

( ) ( )0wtkcospwtp +=     ( ) ( )0wtksinpwtq +−=  ( ) 0rtr = ,           (4) 
 
where w0 and wp are constants and they are computed by initial conditions at instant t0.  If p0, q0, 
r0 are the initial components of the spacecraft spin velocity, w0 and wp (the projection of spin 
velocity on the plane xy) are given by ( Zanardi, 2000): 
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00p
0q

0 tk)(tanaw −=
−

         and             2
0q2

0p2
pw += .                              (5)  

 
Therefor it is observed that the spin axis velocity describes a conical motion around the 
spacecraft symmetry axis. This motion is called PRECESSION of the spin axis. When the 
satellite is no symmetrical, the z-component of the angular velocity has a periodic variation, and 
it introduce a  NUTATION motion of the spin axis.  
 
In free rotational motion the angular momentum vector ( )L

r
 is constant and Z-axis  of the inertial 

system can be put along it. Then the components of L
r

 in the satellite system are expressed like 
(Zanardi,2000):  
 

θ==θ==ψθ== cosLrILcossinLqILsinsinLpIL z3y2x1 .                (6) 
 
If the satellite is symmetric, by Eq. (5) the z-component  of the spin velocity is constant, then  
 

ttanconsL/rzIθcos ==                            (7) 
 

and  the kinematic equations (2) can be simplified ( 0θ =& ):  
 

ψ+θφ=ψθφ=ψθφ= &&&& cosrcossinqsinsinp .                    (8) 
 
Substituting (6) and (7) in (8), after algebraic manipulations, the Euler angles variation  rate are:  
 

0=== θψφ &&& kh ,                 (9) 
 
where ( ) xI/rzIxIk −=  and xI/Lh=  . 

 
Integrating (9) it is possible to get the solution of the kinematic equations for symmetrical 
satellites: 
 

0)t(0tk)t(0th)t( θ=θψ+=ψφ+=φ ,          (10) 
 
where 000 θψφ e,  are initial conditions at t0. 
 

EQUATIONS OF MOTION: QUATERNION 
 
To avoid the singularities in the kinematic equations generated by Euler angles, the quaternion 
can be used. The quaternion  q  is defined by 4 x 1 matrix given by 
 

[ ] tqqq 4
r

=  ,                     (11)   
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with 

[ ] ( ) ( )2/cosqandn2/sinqqqq 4
t

321 Φ=Φ==
rr

,                    (12) 
   
where  Φ is the rotational angle and n

r  is the spin axis direction. 
 
The kinematic equations that describe the variation rate  of the attitude quaternion components, 
due to rotation of the satellite, are given by (Moore & Pisacane, 1994):  
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The Eqs. (13) depend on the component of spin velocity and a semi-analytical approach  is 
applied to get the solution for the quaternion. 
 
For the symmetrical satellites, this semi-analytical approach (Domingos, 2002) is developed , by 
computing the rotational angle (Φ) and the spin axis  ( n

r
) using the solution (8) for the 

component of the angular velocity. After that the components of the quaternion are computed by 
Eq. (12).  
 

EQUATIONS OF MOTION: ANDOYER VARIABLES 
 
The rotational motion can be also described by the Andoyer variables (Zanardi & Vilhena de 
Moraes, 1999). They are canonical  variables and the dynamic equations can be solved using 
perturbation method.  The Andoyer variables (G, L, H, g, l, h) are defined as: G is the  magnitude 
of the rotational angular moment vector G

r
; L, the projection of G

r
 in satellite z-axis; H, the 

projection of G
r

 in    inertial Z-axis; l, g, h are angles which relate the satellite system and 
inertial system (Zanardi & Lopes, 2000). The dynamic equations of the free rotational motion 
described by Andoyer variables are expressed by (Zanardi & Vilhena de Moraes, 1999):  
 

G/Fg ∂∂=&        L/Fl ∂∂=&        H/Fh ∂∂=&    
g/FG ∂∂−=&     l/FL ∂∂−=&      h/FH ∂∂−=&                                            (14) 

 
where Hamiltonian F is  
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For symmetrical satellites (Ix = Iy),  substituting (15) in (14), it can be observed that  h, G, L, H 
are constant and:  
 

00 ltnlgtng lg +=+=             (16) 
 
where  l0,g0,h0,L0,G0,H0  are initial conditions  and  
 

( )xz0lx0g I/1I/1LnI/Gn −⋅==                               (17)
                

For no  symmetrical satellites (Ix ≠ Iy ≠ Iz), the motion equations in terms of the variable of 
Andoyer are given by:  
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         (18) 

 
The analytical integration of the equations (18) is given in terms of elliptical integrals ( 
Kinoshita, 1972) and it will be not discussed in  this paper.  However it is possible to observe 
that the metric variable L will be a periodic variation and the angles l and g will have a linear and 
periodic variations while h, G and H remain constant. 

 
NUMERICAL SIMULATIONS 

 
The numerical implementation of semi-analytical approach discussed for quaternion and 
symmetrical satellite is presented now. The software MATLAB and the 4th Runge Kutta method 
are used to determine the numerical solution. 
The result of the simulations for symmetrical satellites are presented in the Fig. (1)-(2)  
considering the following initial conditions: 
 

Ix=3.9499 x 10-1(kg.km2);             Iy=Ix;                    Iz=1.0307 x 10-1(kg.km2). 
p0 = 0.0246 (rad./s);                   q0 = 0.01 (rad./s);               r0 = 0 (rad./s).  

00 =Φ ;                             q1 = 0; q2 = 0; q3 = 0; q4 = 1. 
 
For no symmetrical satellites, the numerical results are presented in the Fig. (3)-(4), considering 
Iy = 0.95 Ix and  the same previous initial conditions.  
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FIGURE 1 – Evolution of the quaternion components for a symmetrical satellite.  
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FIGURE 2 – Evolution of the spin velocity for a symmetrical satellite.  
 
FIGURE 3 – Evolution for quaternion components for  no symmetrical satellite. 
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FIGURE 4 - Evolution of the spin velocity for no symmetrical satellite.  
 

SUMMARY 
  
Analyzing the results presented in the previous section and in other simulations (Rodrigues, 
2002) it is observed: 
-  the precession of the spin axis in the Fig. (2) for symmetric satellite; 
-  for no symmetric satellite, the z-component of the spin velocity (r)  has a periodic variation 

due to the interaction between the dynamic equations (Eq. (1)) and the precession, and 
nutation of the spin axis are represented in Fig. (4); 

- for symmetrical satellite, the Andoyer variables G, H, L and h are constant; for no 
symmetrical satellite  the z-component  of the angular moment (L) has periodic variations 
and the angular variables l and g have linear and periodic variations with the time, while H, 
G and h remain constant;  

- for symmetrical satellite the quaternion component q3 is constant (with a numerical error of 
order 10-15) while the others present periodic variations; the semi-analytical solution and 
numerical solution agree and it is useful to verify the developed numerical program; 

- for no symmetrical satellite, all the quaternion components oscillate with the time. In both 
cases the magnitude of the quaternion is constant and equal to 1.  

 
The analysis developed will be useful when the external torques will be included in the equation 
of the rotational motion for no symmetrical satellites.  
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