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ABSTRACT 
 
In this paper we modeled the thrust vector deviations (magnitude and direction) in continuous orbital 
maneuvers, through one correlation function of their values. We studied one parameter that measures 
the correlation intensity between the deviations in practical interest range for the usual space missions. 
This model for the superposed deviations is nearest of the realist phenomena, because admits the 
correlation between the systematic (random bias) and operational (white noise) deviations in space 
missions.     
 
 
INTRODUCTION 
 
The study of the deviations sources in the space vehicle operational systems is very important to the 
space missions development. These sources produces perturbations through the orbital maneuvers that 
demands the use of the propulsion systems. During the thrusters burns these non-ideal systems 
introduces deviations on the keplerian elements and, therefore, dislocates the space vehicle out of the 
nominal trajectories. These deviations are due the engineering operations (manufacturing kind of 
thrust operations, etc) and the mass center line dislocation of the vehicle. Recently, many authors have 
realized studies about these kind of perturbations inside the space trajectories. Porcelli and Vogel 
(1980) studied the orbit insertion deviations propagation in two-impulsive noncoplanar orbital 
transfers  through the final keplerian elements and velocities components. Adams and Melton (1986) 
developed algorithm to calculate the propagation of guidance and navigation deviations along a 
impulsive trajectory involving finite-duration perigee burns in  the semi-major axis, in the position 
and velocity initials, flight-path angle, and burn-on ignition time. Others authors used the propulsion 
system as control system to reach many purposes. See e.g., Kluever (1997), Javorsek II and Longuski 
(1999), Vassar and Sherwood (1985), Ulybyshev (1998), etc. Rodrigues (1991) and Santos-Paulo 
(1998) used one deterministic analysis of thrust deviations effects to the impulsive assumption for the 
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non-punctual satellite. Jesus (1999) developed one extensive numerical and analytical study about 
orbital transfer under thrust deviations, gaussian and uniform distribution probabilistic deviations. The 
deviations did not superposed and or correlated, but only individual and non-correlated direction 
deviations. Numerical and analytical non-linear (near parabolic) cause/effect relation were found 
between the deviations direction (causes) and the keplerian elements deviations (effect), e. g., for the 
final mean semi-major axis. The space maneuvers too are affected by the coupling effects of the 
orbital and rotational motions. Many authors studied these effect:  Duboshin, 1958; Barkin, 1985; 
Beletskii, 1990; Wang, 1991; Wang, 1992 and Maciejewski, 1995. In this paper we extended the Jesus 
(1999) results for the same problem but under correlated and superposed thrust vector deviations. We 
present the results of the direction misalignments effects through the keplerian elements for the 
superposition and correlation thrust deviations. We developed one Monte-Carlo exact numerical 
analysis and found the cause/effect relation between the final keplerian elements (final mean semi-
major axis) and the pitch and yaw direction angle deviations to optimal continuous and non-coplanar 
transfers maneuvers. These angles are the control variables and provides the optimal (fuel 
consumption minimum) direction to thruster burn. 
 
MATHEMATICAL FORMULATION 
 
The basic mathematical formulation (equations motion, equations associated optimal control, 
coordinates systems, etc.) to this orbital problem can be found in Jesus (2002). In this paper we 
present only the thrust vector general characteristics. In the Figure 1 we present the coordinate system 
localized in the satellite (TRN system) and the thrust vector applied to this vehicle.    

 

Fig. 1 – The thrust vector applied to the satellite 
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The thrust components are affected by “pitch” and “yaw” during the burns. The thrust vector is given, 
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and their components are, 

 

     ( ) ( ) ( )ααββ ∆+∆+∆+= sencosFFFR                                                                                       (4) 

     ( ) ( ) ( )ααββ ∆+∆+∆+= coscosFFFT                                                                                       (5) 

     ( ) ( )ββ ∆+∆+= senFFFN                                                                                                          (6) 

 

with, 

       F, FT and ∆F (DES1) are the vector without deviation modulus, the vector with deviations, and the 
vector thrust deviation, respectively; ∆α (DES2) and ∆β (DES3)  are the “pitch” and “yaw” direction 
deviations, respectively; FR, FT and FN are the thrust vector components with deviations in the 
transversal, radial and normal directions, respectively. The DES1, DES2, DES3 are maximum 
deviations, that is, ∆αmax = DES2 = 3 .σ∆α and DES3= 3 .σ∆β =  ∆βmax. 

The equations (4) to (6) present the thrust vector components with superposed deviations. We suggest 
that during the non-ideal propulsion system operations to realize orbital maneuvers, the thrust vector 
will be affected through the burns at the deviations ∆F, ∆α and ∆β due several operational 
uncertainness sources. Besides this, these operations causes too propulsion system consuming, 
therefore, it occurs decay of the propulsion system power. We expect that after the first burn, this 
system loses energy and power. So, the successive burns will introduce accumulative deviations, 
affecting more the orbit-target (nominal trajectory). To model these consuming effects we suggest one 
correlation function thrust deviations, given, 
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with, 

Jn – the correlated deviations 

L – interactions number during the arcs burn 

φk – random phases uniformly distributed in the interval [0,2π] 
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z – correlation parameter 

 
This function provides the individual and correlated thrust deviations (∆α, ∆β, ∆F). The approach 
based on the use of discrete Fourier transforms (Feder, 1992; Osborne et all, 1989; Greis et all, 1991), 
a power-law spectral density imposed by construction whenever the deviations are given by Eq. (7). 
The parameter z defines as much as is strong the correlation between two consecutive deviations 
values. The non-correlated deviations case is obtained at z=0, inside the practical interest range. So, if 
we use this correlation function inside the nonlinear keplerian orbital dynamics to model the effects of 
the non-ideal propulsion system, then the orbital maneuvers of space vehicle will be more realist than 
the orbital maneuvers under thrust vector non-correlated deviations.  
 
CORRELATED DEVIATIONS EVOLUTION 
 

The correlation parameter, z, determines the robustness and their behavior of the correlation between 
two consecutive deviations values. The Figures 2 to 7 show the evolution of the Jn behavior with z.   

Fig.2 – Correlated deviations vs. L, z=0,0                   Fig.3 – Correlated deviations vs. L, z=0,5 

 

Fig.4 – Correlated deviations vs. L, z=1,0                   Fig.5 – Correlated deviations vs. L, z=2,0 
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Fig.6 – Correlated deviations vs. L, z=3,0                   Fig.7 – Correlated deviations vs. L, z=5,0 

 

We can observe that the correlation is more defined with the increasing of the parameter z. Figure 2 
shows the result for the z=0, that is, non-correlated deviations (Jn) case. But, when the parameter z 
increases the correlation between the Jn turn more evident and precise. Figure 7 shows the behavior 
correlation for the z=5,0. This value characterizes a strong correlation and can model the demands of 
the maneuvers under propulsion system so consuming effects. 

 
 NUMERICAL SIMULATIONS RESULTS – SEMI-MAJOR AXIS 

 

In this section we present the Monte-Carlo simulations for orbital transfers maneuvers under direction 
correlated gaussian deviations in the thrust vector. We analyzed two kind of maneuvers. The first is 1) 
a high orbit low thrust coplanar theoretical transfer (T) used by Biggs (1978 and 1979) and Prado 
(1989) to test the optimization method; 2) a middle orbit high thrust non-coplanar practical transfer 
(P) (one of the transfers during the injection of the EUTELSAT II-F2 satellite) from Kuga et alli 
(1991). These were confirmed and improved with respect to the satisfaction of the initial and final 
keplerian elements. The deviations are modeled as random-bias (systematic – S) or white noise 
(operational - O) stochastic processes. We analyzed the correlated deviations effects in the final mean 
semi-major axis, E{a(tf)}, for the both transfers trajectories. Initially, we verified in what range of the 
parameter z the Equation (7) is valid for model the orbital dynamic treated in our simulations.  It is 
necessary that space missions attend to the operational specifications to be feasible. For example, it is 
not desirable thrust vector direction deviations more than 2,50, because this range deviations is 
considered not operational (introduce very strong perturbations through the trajectories, requiring 
correction maneuvers so expensive). The correlated deviations model in (7) reproduces the results of 
the without correlated case to z=0 inside direction deviations range twice major that practical interest 
range (~ 5,50). It is shows the precision of this model. These results can be showed in the Figures (8) 
to (10) for the theoretical orbit, under pitch, yaw and thrust modulus deviations, respectively. The 
results from DES1, Figure 10, are too reproduced, that is, there is not cause/effect relation between the 
final mean semi-major axis and thrust vector modulus deviations. It occurs only mathematical 
fluctuations as seen in Jesus (1999). 
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Fig. 8 –  E{a(tf)} vs. DES2, TS, z=0,0                                         Fig.9 – E{a(tf)} vs. DES3, TS, z=0,0 

 

                                            Fig.10 – E{a(tf)} vs. DES1, TS, z=0,0 

 

In the follow we present the semi-major axis values evolution for the z≠0 for the both maneuvers, 
initially, to individual direction deviations, after, to superposed direction deviations and, finally, 
superposed and correlated direction deviation. The Figures (11) to (14) show the semi-major axis 
behavior  as function of the increasing z for the direction individual deviations. In these figures we 
can observe that the correlation effects are perceptible for deviations range more than DES2 = 2,00 
and DES3= 4,00 (theoretical orbit). This effect is more strong in this orbit through the pitch angle, 
because this orbit is in-plane. But, the practical maneuvers is out-plane and, therefore, we expect that 
the yaw angle has more effect inside the orbit than the pitch angle. The increasing of the correlation 
effect in this orbit is to produce smaller decay in the E{a(tf)} values than the without correlated 
deviations case, but in practical interest out-range. This can be seen in the Figure (14). The yaw 
individual deviations interferes more in this orbit than the pitch individual deviations.  
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Fig. 11 –  E{a(tf)} vs. DES2, TS, z≠0,0                                   Fig.12 – E{a(tf)} vs. DES3, TS, z≠0,0 

 

Fig. 13 –  E{a(tf)} vs. DES2, PS, z≠0,0                                   Fig.14 – E{a(tf)} vs. DES3, PS, z≠0,0 

 

The Figures (15) and (16) show the results for the both orbits under superposed correlated equals 
deviations. The superposition and correlation effects can be analyzed for the equals deviations as 
function of the increasing z. 

Fig. 15 –  E{a(tf)} vs. DES2=DES3, TS, z≠0,0             Fig.16 – E{a(tf)} vs. DES2=DES3, PS, z≠0,0 
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In the Figures (15) and (16) we can observe that the behavior verified for the individual deviations 
case w.r.t. the correlation is maintained, but it is amplified under superposition direction deviations in 
the both orbits. Orbits under only superposed deviations were more damaged than those under 
individual direction deviations (Jesus, 2003). Apparently, the correlation effects inverts this behavior, 
but interest practical out-range. So, we can say that the model in Equation (7) is very good and secure 
inside the interest practical range. In the follow we present the results for the more general case, that 
is, orbits under thrust vector superposed and correlated different deviations. The Figures (17) to (20) 
show the results to the practical orbit as function z. 

Fig. 17 –  E{a(tf)} vs. DES2≠DES3, PS, z=0,5             Fig.18 – E{a(tf)} vs. DES2≠DES3, PS, z=1,0 

 

Fig. 19 –  E{a(tf)} vs. DES2≠DES3, PS, z=2,0             Fig.20 – E{a(tf)} vs. DES2≠DES3, PS, z=3,0 
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This results to the theoretical orbit is too verified, but it not so strong. The Figures (21) to (24) show 
these results. The theoretical orbit surface is, relatively, little damaged with the correlation  effects. 

Fig. 21 –  E{a(tf)} vs. DES2≠DES3, TS, z=0,5             Fig.22 – E{a(tf)} vs. DES2≠DES3, TS, z=1,0 

Fig. 23 –  E{a(tf)} vs. DES2≠DES3, TS, z=2,0            Fig.24 – E{a(tf)} vs. DES2≠DES3, TS, z=3,0. 
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optimality and energy space vehicle will be necessary. This situation can be modeled through 
increasing correlation parameter z. 
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