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Abstract
A circuit model based on a Green’s function method was developed to evaluate the currents induced

during startup in the vacuum vessel of ETE (Experimento Tokamak Esférico). The eddy currents
distribution is calculated using a thin shell approximation for the vacuum vessel and local curvilinear
coordinates. The results are compared with values of the eddy currents measured in ETE.

1. Introduction
The study of breakdown and current buildup conditions in ETE (Experimento Tokamak Esférico)
requires careful calculations of the error fields and flux consumption. In low aspect ratio devices such
as ETE the center column must have a diameter as small as possible, with minimum space reserved
for conductors to carry the toroidal field current as well as to fit a high-performance ohmic heating
solenoid. This space restriction resulted in the construction of a robust vacuum vessel for ETE without
any insulating toroidal break, which implies small toroidal electrical resistance notwithstanding the
use of a high-resistivity alloy (Inconel). The small toroidal resistance introduces limitations in the
electric field that may be applied inductively and affects the poloidal field system by way of eddy
currents induced in the vessel.
This paper presents magnetostatic calculations used to evaluate the currents induced in the vacuum

vessel of ETE during startup. The distribution of eddy currents is modeled using a thin shell
approximation for the vacuum vessel. The equation governing the surface current induced on the thin
shell is derived using a Green’s function method. This three-dimensional problem in space can be
reduced to one dimension due to symmetry, and by the adoption of local curvilinear coordinates and
a spectral representation for the contour of the vacuum vessel. The resulting one-dimensional integral
equation for the surface current can be solved expanding the current in a Fourier series in the poloidal
angle. Introducing Laplace transformation in time, the problem for the set of Fourier components of
the surface current is reduced to a circuit model that can be solved by matrix procedures. The results
are compared with preliminary measurements of the eddy currents in ETE.

2. Formulation of the magnetostatic problem

The surface current density in a thin shell of thickness δ is given in terms of the current density
−→
j
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by[1] −→
K = δ

−→
j ,

where the current density is related to the electric field by Ohm’s law, −→j = σ
−→
E . Application of

Faraday’s law for a constant conductivity σ leads to

∇×−→K = σδ∇×−→E = −σδ∂
−→
B

∂t
,

where
−→
B corresponds to the total induction. The condition of current continuity gives

∇ ·−→K = σδ∇ ·−→E = 0.
For an axisymmetric configuration there is no dependence on the toroidal angle ζ. Furthermore,

the variation of the toroidal flux in time, ∂ΦT/∂t, is neglected during startup, so that no poloidal
currents are induced on the vacuum vessel. In this case, axisymmetry and the solenoidal property of
the magnetic field, ∇ · −→B = 0, imply a single toroidal component of the vector potential. In vector
form the potential is given in terms of the poloidal flux ΦP by

−→
A =

ΦP
2π
∇ζ.

In the same way, the surface current vector is expressed in terms of the single toroidal componentKT−→
K = hζKT∇ζ,

where the scale factor hζ = |∂−→r /∂ζ| corresponds to the radial distance to the symmetry axis in
cylindrical coordinates. Substituting the expression for

−→
K in Faraday’s law it follows that

∇ζ ×∇ (hζKT ) = σδ
∂
−→
B

∂t
.

Now, the magnetic induction is calculated in terms of the poloidal flux by
−→
B = ∇×−→A = − 1

2π
∇ζ ×∇ΦP .

This equation, combined with the previous one and the assumption of an uniform distribution over the
small thickness δ, leads to a relation between the toroidal surface current density and the local value
of the poloidal flux:

KT = − σδ

2πhζ

∂ΦP
∂t
.

Moreover the flux function must satisfy the boundary conditionbn ·∇ΦP = −2πµ0hζKT ,
which corresponds to the discontinuity of the magnetic induction across the surface layer of current
(bn is the unit normal) bn× h−→B i

S
= µ0

−→
K.

In general, the vector potential at any point −→r not on the surface S 0 is given by the extension of
the Biot-Savart law

−→
A (−→r ) = µ0

4π

ZZ
S0

−→
K (−→r 0)
|−→r −−→r 0|d

2r0 +
−→
A ext (

−→r ) ,
where

−→
A ext stands for the external sources. Using the property |∇ζ|2 = h−2ζ the equivalent integral

relation for the flux function is

ΦP (
−→r ) = µ0

2
h2ζ∇ζ ·

ZZ
S0

hζ0KT (
−→r 0)∇ζ 0

|−→r −−→r 0| d2r0 + Φext (
−→r ) .

The differential element of area in the coordinate surface ρ that coincides with the surface layer of
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current is d2r (ρ) = hζd` (θ) dζ. Using the property ∇ζ · ∇ζ 0 = cos (ζ − ζ 0) /
¡
hζhζ0

¢
the above

equation can be written as

ΦP (
−→r ) = µ0

I
KT (
−→r 0)

¿
πhζhζ0 cos (ζ − ζ 0)

|−→r −−→r 0|
À

ζ0
d` (θ0) + Φext (

−→r ) ,

where h. . .iζ = (2π)−1
R
(. . .) dζ. This defines the Green’s function for the axisymmetric Ampère’s

law
G (−→r ,−→r 0) =

¿
πhζhζ0 cos (ζ − ζ 0)

|−→r −−→r 0|
À

ζ0
.

The Green’s function integral for ΦP automatically satisfies the boundary condition bn · ∇ΦP =
−2πµ0hζKT .
Finally, taking the derivative with respect to time and using the relation between KT and ∂ΦP/∂t

provided by Faraday’s law, the excitation of Foucault currents in a thin axisymmetric shell is governed
by the equation

2πhζ
σδ

KT (
−→r ) = −µ0

I
∂KT (

−→r 0)
∂t

G (−→r ,−→r 0) d` (θ0)− ∂Φext (
−→r )

∂t
.

This equation has local terms depending on the shell resistivity and non-local terms depending on
mutual inductance effects between diverse regions of the current distribution. The total toroidal
current induced in the shell is

IT =
1

2π

ZZ
S(ρ)

−→
K ·∇ζ d2r (ρ) =

I
KT (θ) d` (θ) =

Z 2π

0

KT (θ) hθ dθ,

where the scale factor hθ = |∂−→r /∂θ|.

3. Spectral representation of the ETE vacuum vessel
In order to apply effectively the one-dimensional integral equation for the eddy currents obtained in
the previous section, it is necessary to use a coordinate system coinciding with the contour of the
axisymmetric shell. The centerline of the ETE vacuum vessel has an exact sectionally (piecewise)
continuous representation given in the appendix and shown in Fig.1 as a continuous line.
The sectional continuous representation specifies the cylindrical coordinates R (ω), Z (ω) as

functions of the poloidal angle ω in a pseudo-toroidal coordinate system centered in the cross-section
of the vacuum vessel, as shown in Fig.1. Now, the centerline of the vacuum vessel can be represented
approximately by a truncated spectral expansion in Chebyshev polynomials: R (θ) = C0 + C1 cos θ − a

XN

n=1
Cn [1− Tn (cos θ)]

Z (θ) = EV sin θ
h
C1 − a

XN

n=1
CnUn−1 (cos θ)

i
The coefficients C0 and C1 are determined by the constraints

R (0) = R0 + a, R (π) = R0 − a,
where R0 = (DV + dV ) /4 and a = (DV − dV ) /4 are the major and minor radii of the toroidal
vessel, respectively (the geometrical parameters of the vacuum vessel are defined in the appendix). It
follows that

C0 = R0 + a
X[(N−1)/2]

n=1
C2n+1, C1 = a

µ
1−

X[(N−1)/2]
n=1

C2n+1

¶
,

where [N ] denotes the greatest integer less than or equal to N . The elongation EV and the remaining
spectral coefficients C2, C3, . . . CN can be determined by a least-squares fitting procedure. In the
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Figure 1: Centerline of the ETE vacuum vessel (continuous line) and spectral fit (dashed line).

case of the ETE vacuum vessel a reasonable spectral representation can be obtained including only
elongation, triangularity and quadrangularity (squareness) corrections. The least-squares calculation
gives EV = 2.164, C2 = 0.0981 and C3 = −0.110, and the resulting spectral fit is show in Fig.1 as
a dashed line. The least-squares fitting procedure includes also a determination of the best mapping
between the pseudo-toroidal angle coordinate ω and the poloidal angle θ in the local curvilinear
coordinate system. The adjusted θ − ω mapping is shown in Fig.2. Finally, the spectral expansion
R (θ), Z (θ) allows to determine the scale factors along the vacuum vessel centerline

hζ (θ) = R (θ) , hθ (θ) =

sµ
∂R

∂θ

¶2
+

µ
∂Z

∂θ

¶2
.

4. Fourier components of the surface current
The integral equation for the Foucault currents in a thin shell, that was derived in Section 2, can be
solved by expandingKT (θ, t) in a Fourier series

KT (θ, t) =
1

2πhθ (θ)

Ã
IT (t) +

∞X
n=1

In (t) cosnθ

!
.

The total toroidal current flowing in the axisymmetric shell is IT (t) according with the definition in
Section 2. Substitution of the Fourier series in the integral equation gives

hζ (θ)

σδhθ (θ)

³
IT (t) +

X∞
n=1

In (t) cosnθ
´
= −µ0

µ
∂IT
∂t
hG (θ, θ0)iθ0

+
X∞

n=1

∂In
∂t
hG (θ, θ0) cosnθ0iθ0

¶
− ∂Φext

∂t
,

where h. . .iθ = (2π)−1
R
(. . .) dθ. Limiting the Fourier coefficients to order `, the cosmθ harmonics

of this equation result in a set of ` + 1 linear equations for IT (t) and In (t) that can be written in the
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Figure 2: Adjusted θ − ω mapping for the ETE vacuum vessel.

form

R0mIT (t) + L0m
∂IT
∂t

+
X̀
n=1

µ
RnmIn (t) + Lnm

∂In
∂t

¶
= − ∂

∂t
hΦext (θ, t) cosmθiθ ,

where Rnm and Lnm are resistance and mutual inductance coefficients defined by: Rnm =
1

σδ

¿
hζ (θ)

hθ (θ)
cosnθ cosmθ

À
θ

Lnm = µ0 hhG (θ, θ0) cosnθ0iθ0 cosmθiθ
These definitions and the symmetry of the Green’s function show that Rnm and Lnm are symmetric
matrices.
In general, the external flux is the sum of the magnetizing flux ΦM (t) produced by an ideal

transformer and the fluxes Φk (−→r , t) produced by sets of poloidal field coils:
Φext (

−→r , t) = ΦM (t) + Φk (
−→r , t) = ΦM (t) + µ0

X
k

Ik (t)Gk (
−→r ,−→r k) .

Assuming that the external coils are formed by pairs of coils placed symmetrically with respect to the
equatorial plane, and connected in series, the expression for the external flux becomes

Φext (
−→r , t) = ΦM (t) + µ0

X
k

Ik (t) [Gk (
−→r ,Rk, Zk) +Gk (−→r , Rk,−Zk)] ,

where the Green’s function is given in terms of the complete elliptic integralsK an E by
Gk (θ) =

p
R (θ)Rk

Ã
[2−mk (θ)]K [mk (θ)]− 2E [mk (θ)]p

mk (θ)

!
mk (θ) =

4R (θ)Rk

[R (θ) +Rk]
2 + [Z (θ)− Zk]2

(0 ≤ mk ≤ 1)
Defining the mutual inductance coefficients

Lkm = µ0 h[Gk (θ) +Gk (−θ)] cosmθiθ
the equations for the Fourier coefficients of the surface current density may be written (δnm is the

5



Kronecker delta)

R0mIT (t) + L0m
∂IT
∂t

+
X̀
n=1

µ
RnmIn (t) + Lnm

∂In
∂t

¶
= −∂ΦM

∂t
δ0m −

X
k

Lkm
∂Ik
∂t
.

In this way the problem of Foucault currents induced in a thin axisymmetric shell is reduced to the
solution of a set of circuit-like coupled linear equations for the Fourier components of the surface
current density.
The calculation of the mutual coefficients Lnm requires some attention because of the singular

character of the Green’s function

G (θ, θ0) →
θ0→θ
−hζ (θ)

(
1

2
ln

·µ
hθ (θ)

8hζ (θ)

¶
2 sin

µ
θ − θ0

2

¶¸2
+ 2

)
.

Introducing the auxiliary function[2]

G (θ, θ0) = G (θ, θ0)
hζ (θ)

+

(
1

2
ln

·µ
hθ (θ)

8hζ (θ)

¶
2 sin

µ
θ − θ0

2

¶¸2
+ 2

)
,

which is nonsingular but nonsymmetric (not a true Green’s function), the expression for the mutual
coefficients becomes

Lnm = µ0 hhζ (θ) hG (θ, θ0) cosnθ0iθ0 cosmθi
θ

−µ0
*
hζ (θ)

*(
1

2
ln

·µ
hθ (θ)

8hζ (θ)

¶
2 sin

µ
θ − θ0

2

¶¸2
+ 2

)
cosnθ0

+
θ0
cosmθ

+
θ

.

Using the integral
1

4π

Z 2π

0

ln

·
2 sin

µ
θ − θ0

2

¶¸2
cosnθ0dθ0 = −cosnθ

2n
(1− δ0n)

it follows that
Lnm = µ0 hhζ (θ)Gn (θ) cosmθiθ

+µ0δ0n

¿
hζ (θ)

·
ln

µ
8hζ (θ)

hθ (θ)

¶
− 2
¸
cosmθ

À
θ

+µ0

µ
1− δ0n
2n

¶
hhζ (θ) cosnθ cosmθiθ ,

where
Gn (θ) = hG (θ, θ0) cosnθ0iθ0 =

1

2π
P
Z 2π

0

G (θ, θ0) cosnθ0dθ0
and P designates the principal value of the integral to make clear the absence of singularities. The
logarithmic term in L00 corresponds to the self-field contribution to the inductance.

5. Solution of the circuit model and results
It is now an easy matter to solve the set of circuit equations for the Fourier components of the Foucault
current. Introducing Laplace transformation in time and denoting the complex frequency by s, the
equations for IT (s) and In (s) (n = 1, 2, . . . , `) can be written in matrix form

R00 + sL00 R10 + sL10 . . . R`0 + sL`0
R01 + sL01 R11 + sL11 . . . R`1 + sL`1

...
...

...
R0` + sL0` R1` + sL1` . . . R`` + sL``


| {z }

R+sL


IT (s)
I1 (s)
...

I` (s)


| {z }

I(s)

= −s


ΦM (s) +

P
k Lk0Ik (s)P

k Lk1Ik (s)
...P

k Lk`Ik (s)


| {z }

Φ(s)

,
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where R+ sL is a symmetric matrix. The initial values of the magnetizing sources are taken equal to
zero at startup. The solution of the circuit model is obtained simply by multiplying the flux excitation
vector Φ (s) by the inverse matrix (R+ sL)−1 and then calculating the inverse Laplace transform.
One advantage of the method is that the inverse matrix depends only on the geometry of the problem,
which is independent of the detailed excitation.
The resistance and inductance components scale as A/ (EV σδ) and µ0R0 [ln (8A)− 2],

respectively , where EV = 2.164 is the elongation, A = 1.346 is the aspect ratio and R0 = 0.348m
is the major radius of the vacuum vessel. The conductivity of Inconel at room temperature is
σ ∼= 7.8× 105 (Ω ·m)−1. The average surface current scales asKT ∼ AIT/ (2πR0), where IT is the
total current induced in the vacuum vessel. Now, the thickness of the vacuum vessel is∆V = 6.35mm
for both the torispherical head and the external cylindrical wall, and δV = 1.00mm for the internal
cylindrical wall cf. the appendix. In the calculation of Rnm it is possible to split the θ integration in
two sections to account for the change in the wall thickness. However, to get preliminary results in
the case when only the ohmic transformer is excited, an effective thickness δ ∼= 1.2mm was assumed
for the vacuum vessel taking into account that the surface current is concentrated in the inner wall.
Figure 3 shows the results of calculations performed for the eddy current behavior in space and

time, which compares satisfactorily with measurements taken in the ETE vacuum vessel (only three
harmonics, ` = 3, were included in this computation). The figure shows: a model for the profile of
the magnetizing flux applied by the ohmic heating system during the eddy current measurements;
the calculated profile of the total current induced in the vacuum vessel; and the distribution of the
surface current at four instants τ 0/2, 2τ 0, 4τ 0 and 16τ0 (τ 0 = µ0σδR0/A = 0.304ms sets the time
scale). The instant τ0/2 corresponds approximately to the maximum negative value of the induced
current and 16τ 0 to the maximum positive value (of course, the induced current opposes the excitation
according to Lenz’s law). From the plots in Fig.3 and the mapping θ − ω shown in Fig.2 one verifies
that the eddy current distribution has two peaks at ω ∼ 68◦ and ω ∼ 112◦, near the two corners of the
vacuum vessel contour and in accordance with rough measurements of the distribution excited by the
ohmic heating system in ETE.
Based on the calculated and experimental results a pair of compensation coils is being designed to

apply a vertical field bias before plasma breakdown in ETE. In addition, the eddy current distribution
is being used to define an equivalent set of filaments that model the vacuum vessel effects in plasma
discharge simulations during the early phase. In the zero-dimensional simulations the external
inductance of the low aspect ratio ETE plasma and the mutual inductance coefficients between the
plasma, the vacuum vessel filaments and the external poloidal field coils are calculated in accordance
with a previous work [3] .

6. Appendix. Sectionally continuous representation of the ETE
vacuum vessel

The centerline of the ETE vacuum vessel is described exactly by the following sectionally continuous
representation: 

R (ω) =
DV
2

Z (ω) =

µ
DV − dV

4

¶
tanω

when 0 6 ω 6 arctan
µ

HV /2

(DV − dV ) /4
¶
;
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Figure 3: Magnetizing flux applied by the ohmic heating system, total eddy current in the vacuum
vessel, and eddy current distribution at four instants of time.



R (ω) =

µ
DV + dV

4

¶
sin2 ω +

HV
2
sinω cosω +

µ
DV
2
− rV

¶
cos2 ω

+cosω

·
HV

µ
DV − dV

4
− rV

¶
sinω cosω

−
µ
DV − dV

4

¶µ
DV − dV

4
− 2rV

¶
sin2 ω −

Ãµ
HV
2

¶2
− r2V

!
cos2 ω

#1/2
Z (ω) =

µ
DV − dV

4
− rV

¶
sinω cosω +

HV
2
sin2 ω

+sinω

·
HV

µ
DV − dV

4
− rV

¶
sinω cosω

−
µ
DV − dV

4

¶µ
DV − dV

4
− 2rV

¶
sin2 ω −

Ãµ
HV
2

¶2
− r2V

!
cos2 ω

#1/2
when arctan

µ
HV /2

(DV − dV ) /4
¶
< ω 6 arctan

µ
HV /2 + rV sinαV

(DV − dV ) /4− rV (1− cosαV )
¶
;
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

R (ω) =

µ
DV + dV

4

¶
sin2 ω − ZV sinω cosω

+cosω

(·µ
DV + dV

4

¶
cosω + ZV sinω

¸2
−
µ
DV + dV

4

¶2
+ (R2V − Z2V )

)1/2
Z (ω) = −

·µ
DV + dV

4

¶
cosω + ZV sinω

¸
sinω

+sinω

(·µ
DV + dV

4

¶
cosω + ZV sinω

¸2
−
µ
DV + dV

4

¶2
+ (R2V − Z2V )

)1/2
when arctan

µ
HV /2 + rV sinαV

(DV − dV ) /4− rV (1− cosαV )
¶
< ω 6 arctan

µ
RV sin βV − ZV
− (DV − dV ) /4

¶
; and

R (ω) =
dV
2

Z (ω) = −
µ
DV − dV

4

¶
tanω

when arctan
µ
RV sin βV − ZV
− (DV − dV ) /4

¶
< ω 6 π.

The angle ω in this representation is the pseudo-toroidal angle centered on the midpoint of the
vacuum vessel cross section cf. Fig.1. The geometrical parameters are: DV = 1.213m (48”-1/4”)
is the average diameter, RV = 0.968m (38”+1/8”) is the average radius of dish, and rV = 0.130m
(5”+1/8”) is the average knuckle radius of the torispherical head of thickness∆V = 0.00635m (1/4”),
respectively; dV = 0.179m (0.180-0.001) is the average diameter and hV = 1.200m is the total height
of the internal cylindrical wall of thickness δV = 0.001m, respectively. The height of the external
cylindrical wall, also of thickness∆V , is calculated by

HV = 2 [(RV − rV ) sinαV − ZV ] ,
where the center of the dish radius on the symmetry axis is specified by ZV , which is calculated by

ZV =

µ
RV +

∆V

2

¶s
1−

µ
dV /2

RV +∆V /2

¶2
− hV
2
.

The angular parameters αV and βV are calculated by

αV = arccos

µ
DV /2− rV
RV − rV

¶
, βV = arccos

µ
dV /2

RV

¶
.
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