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ABSTRACT 

 

Optimization plays a very important role in space applications since mass and structural flexibility are 

critical requirements for space missions, i.e., the structure should be as lightweight and stiff as possible. As 

a contribution to this area this paper investigates compliance optimization of structures under multiple load 

cases. The problem can be solved through a multi-criterion optimization where the load cases associated 

with each and every loading configuration are treated as components of multi-objective function vector. 

However, numerical evaluation is not an easy task because it sometimes involves a very intensive 

computational effort. Alternatively, the multi-objective optimization problem can be re-formulated using a 

min-max strategy that does not require simultaneous consideration of all the load cases as components of 

multi-objective function vector. Instead, this formulation shows that, for compliance optimization purposes, 

it is sufficient to consider only those loads, which define the convex hull of the applicable load set, i.e., the 

selected set of loads which will effectively lead to the optimum design. Through the min-max formulation 

the number of load cases involved in the design procedure is drastically reduced. The efficiency of the 

proposed technique is illustrated by one example consisting of a variable thickness beam subjected to 

uncertain loadings. 
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INTRODUCTION 

 

Aircraft wings and fuselage, solar panels of 

satellites, engine pistons and solid propellant 

rocket engines are some examples of 

aerospace structural components that can be 

considered critical because they are submitted 

to many – hundreds or even thousands - of 

load cases. And it’s known that, during the 

operation of the structural component, the 

loading configuration may change. 

 

Another worrisome aspect structural design is 

the consideration of uniform loading 

distribution. Most design manuals bring 

tables and graphs based on this consideration, 

but hardly ever all loading configurations are 

perfectly uniformly distributed. 

 

When a structural optimization is performed 

to find a lightweight and stiff structural 

component, the optimization toll often 

considers only one or few load cases. Hence, 

the optimum designs obtained may become 

sensitive or even vulnerable to loading 

variation. This problem can be solved or 

alleviated by a multi-criterion optimization 

formulation where the load cases associated 

with each and every loading configuration are 

treated as components of a multi-objective 

function vector [1]. However, numerical 

evaluation of such method is not an easy task 

and involves intensive computational 

procedures. 

 

Another optimization technique is the 

uncertain load approach. Using probabilistic 

methods, the uncertain approach is more 

refined and conservative than the approach 

described above. This method describes a 

load space through probability density 

distributions. The loads have distinct 

probabilities of occurrence. However, the 

most difficult problem is to select the load 

case with the highest probability of 

occurrence and to know what probability 

distribution is that. 

 

Alternatively, the multi-objective 

optimization problem can be re-formulated 

using a min-max strategy that requires neither 

simultaneous consideration of all the load 

cases as components of a multi-objective 

function vector nor probability density 

distributions. Since there are hundreds or 

even thousands of load cases involved in 

practical structural designs, the min-max 

methodology adopted is based on a well-

defined loading space that contains all the 

possible load cases and all convex 

combinations of them. The optimization 

performed delivers two results: the optimal 

design and the worst load cases. 

 

This methodology proposed is based on 

convex modeling and the considerations of an 

admissible loading space. All elements of this 

loading space have equal probability of 

occurrence. This approach does not depend 

on the probability distributions but on the 

extremal properties of the loading space 

chosen. The optimum design refers to the 

most severe load belonged to an admissible 

load set. This technique assures that the 

optimum design provided by this elected load 

is conservative and also optimum to the 

others because were considered less harmful 

to the optimal design. 

 

 

MULTI-CRITERIA OPTIMIZATION 

 

There are optimization problems that require 

not only one objective function but several of 

them, each objective function representing a 

different feature of performance index. For 

example, it is sometimes desired to decrease 

the mass of a satellite solar panel and also 

increase its global fundamental frequencies. 

 

The components of the multi-objective 

function vector may be conflicting. It is 

usually observed that when a given 

component is improved with respect to the 

some design variables the same design 

variables impair other components. So, the 

strategy optimization must be able to deal 

with many design criteria involved and with 

the possible competition among them. 

 

A general multi-objective function 

optimization problem may be stated as in 

equation (1). 
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where G represents the feasible design space 

defined by equality and inequality 

constraints. In practical problems, there is not 
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an optimum point x* that minimizes all the 

functions fi simultaneously. Thus, it is desired 

to find a particular design x
)

 that is better 

than another design x  is some sense. 

 

The idea sorting designs according to  some 

criterion relates to the concept of dominance. 

It can be mathematically stated considering 

that x
)

 dominates over another design x  

when )()ˆ( xx ii ff ≤  for all i ∈ [1,2,…,l] and 

)()ˆ( xx jj ff <  for some j ∈ [1,2,…,l]. A 

design x
)

 is said to be a Pareto design if and 

only if there does not exist a design x ∈ G 
that dominates over x

)

. If there is a single 

design x* that minimizes all the functions fi, 

this is the only Pareto design for that multi-

criteria optimization problem. However, as 

stated above, it is common to have a 

multitude of Pareto designs and the engineer 

must elect one of them as the effective 

optimal design. 

 

 

THE MIN-MAX TECHNIQUE 

 

An alternative formulation to the multi-

criteria optimization problem is to minimize 

the maximum fi(x) for all i ∈ [1,…,l]. The 
minimax approach simultaneously minimizes 

fi(x) with respect to x ∈ G and maximizes it 

with respect to i ∈ [1,…,l]. It can be stated as 
in the equation (2). 
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There are two types of design variable in 

equation (2): the first one is the continuous 

design variable x and the second one is the 

discrete design variable i. Another way to 

state minimax optimization problem with 

only continuous design variables is presented 

in equation (3). 
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Cherkaev and Cherkaeva [2] applied the 

minimax formulation in structural 

optimization. They studied the sensitivity of 

the optimal designs to variations on the 

applied load. Their idea was to minimize the 

design strain energy under the most harmful 

load case elected among a defined set of 

applied load. 

 

This section will deal with the linear problem 

of minimum strain energy stored in given 

structure when it is subjected to uncertain 

loads. The strain energy, also known as 

compliance, measures the structure 

flexibility. So it is possible to evaluate the 

structure deformations, stresses and strains 

and also estimate the natural frequencies 

using Rayleigh’s quotient [3, 4]. 

 

The goal of this present work is to apply the 

minimax method on the strain energy 

minimization of structures under uncertain 

loads. The uncertain loads belong to a load 

space where any element is referred by f. 

When f is fixed, i.e., one particular load is 

selected, the strain energy can be stated as in 

equation (4). 
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where H is the design space where all 

constraints on h are satisfied. The design 

variable h may be related to the thickness 

distribution of a component, fiber angle 

orientation and number of plies in the case of 

composite structure, position of stiffeners, 

etc. But, f is not a fixed load because it is 

assumed uncertain. Therefore, the statement 

of the multi-objective optimization approach 

may be given as in equation (5). 
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The problem in equation (5) must be solved 

using a multi-criterion approach. However, 

when the min-max strategy is applied, the 

problem can be reformulated as in the 

equation (6). 

 

),( maxmin fh
fh
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(6) 

 

where F is the load space that contains all the 

loads f1, f2, …, fl. 

 

The optimization presented in equation (6) is 

bilevel. It gives the solution of the best design 

in terms of h and the worst load case referred 
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to as f. Equation (6) can also be expressed by 

equation (7).  
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Equation (7) maximizes the objective 

function φ with respect to the uncertain loads 
f, and after, minimizes it with respect to h. 

This approach assures the optimal design can 

withstand loading perturbations because any 

variation of f within the admissible load 

space F, necessarily leads to lower and not 

harmful strain energy. This is because the 

“max” part of the bilevel optimization already 

identified the most dangerous loading 

configuration. 

 

 

THEORETICAL ASPECTS 

 

Basic concepts of convex sets, convex hulls 

and convex functions will be given in order to 

facilitate explanation of the coming 

optimization strategy. 

 

Consider a set whose elements is a collection 

composed by x1, x2,…, xn. The point 

∑ =
=

n

i ii1
xx ξ is said to be a convex 

combination of x1, x2, …, xn when 

∑ =
=

n

i i1
1ξ  and ξi ≥ 0 for all i ∈ [1,…, n]. 

 

A function f(x) is convex when f((1-θ)x1+θ 
x2) ≤ (1-θ) f(x1) + θ f(x2) for 0 ≤ θ ≤ 1 and for 
any x1 and x2. Conversely, a function is 

concave when when f((1-θ)x1+θ x2) ≥ (1-θ) 
f(x1) + θ f(x2) for 0 ≤ θ ≤ 1 and for any x1 and 
x2. 

 

A set is said convex when, for any elements A 

and B in the set, the element P = (1-θ) A + θ 
B is also in the set, where 0 ≤ θ ≤ 1. 
 

The conclusion drawn from the definitions of 

convex combination and convex set is that 

any point within the interior of the convex set 

can be written as a convex combination of the 

points on its boundary. Based on this 

observation, the convex hull Ωhull of a given 

set Ω can be defined as the smallest subset of 

Ω such that each and every element in Ω can 

be written as a convex combination of the 

elements in Ωhull. It can be concluded from 

this definition that the convex hull of any 

polyhedron is the set of points of its vertices 

(Fig. 1). 

 

 

 

 

 

 

Figure 1: Convex hull of a convex polygon 

Based on the above principles, it can be 

shown that the quadratic form C(f) = fT A f is 

convex in f, where A is a symmetric and 

positive-definite matrix. Considering the 

points fi, i ∈ [1,…, n], the following lemma 
demonstrates that C is convex by showing 

that CC ′′≤′  where 











=′ ∑∑

==

n

j

T
jj

n

i

T
iiC

11

fAf ξξ  and 

∑
=

=′′
n

i

i
T
iiC

1

Affξ  

with 1

1

=∑
=

n

i

iξ  and ξi ≥ 0 for all i ∈ [1,…, n]. 
Matrix A is positive-definite, so 

( ) ( ) 0≥−− ji
T

ji ffAff  

( ) ( ) 0≥−− ji
T

jiji ffAffξξ  

( ) ( ) 0
1 1

≥−−∑∑
= =

n

i

n

j

ji
T

jiji ffAffξξ  

( )
( )∑∑

∑∑

= =

= =

+

≤+

n

i

n

j

j
T
ji

T
iji

n

i

n

j

i
T
jj

T
iji

1 1

1 1

AffAff

AffAff

ξξ

ξξ
 

Since 1

1

=∑
=

n

i

iξ  and A is symmetric 

∑∑∑
== =

≤
n

i

i
T
ii

n

i

n

j

j
T
iji

11 1

AffAff ξξξ  



                                   55th International Astronautical Congress 2004 - Vancouver, Canada

what proves that CC ′′≤′ . 

 

As a second lemma, consider n numbers a1, 

a2,…, an. The maximum value of 

∑
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MM af = , 2

Ma being the 

maximum of all 
2
ia  for i ∈ [1,…, n]. Since 

2
Ma  is the maximum of all 2ia  then 
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Maf ≤ . The equality 2

Maf =  holds 

only when 1=Mξ  and 0=iξ  for i ∈ [1,…, 

M-1, M+1,…, n]. 

 

Combining both lemmas it is concluded that, 

given l load cases f1, f2,…, fl and all the load 

cases resulting from their convex 

combination, the maximum of C(f) = f
T
 A f (a 

convex function) is necessarily associated 

with the load case M that yields the maximum 

( ) M
T
MMC .A.fff = . 

 

 

THE COMPLIANCE OPTIMIZATION 

STRATEGY 

 

The minimax problem presented on equation 

(7) gives the optimum design of a structure 

subjected to a loading set. The expression for 

the compliance, in a linear static finite 

element analysis, is C(f) = f
T
 K
-1
 f, where f is 

the load vector and K is the stiffness matrix 

that is always symmetric and positive-

definite. 

 

In order to solve the objective function φ in 
equation (7) it is not necessary to compute all 

load cases, but only those that belong to the 

vertices of the convex load set, i.e., the 

convex hull, what considerably simplifies the 

computational effort. 

 

Figure 2 shows a sketch where the 

compliance surface and the admissible load 

space. It can be seen that C = 0 occurs only if 

f = 0. The points on the fifj plane (black and 

blue dots) are eligible load cases and the 

dashed polygonal line connects the points 

(blue dots) belonging to the convex hull of 

the load space. According to the previous 

discussion the worst compliance must be 

associated with one of the points in the 

convex hull (blue dots). Hence, only those 

points must be assessed in order to find the 

worst compliance of the entire admissible 

load space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Compliance surface and admissible load 

space 

 

 

THE BEAM EXAMPLE 

 

An Euler-Bernoulli beam will be optimized 

for the maximum compliance due to 

uncertain loads. The beam has rectangular 

cross-section, variable thickness (height) and 

constant width. To avoid unrealistic zero 

thickness, a base beam thickness is 

preliminarily stated. The optimization 

thickness distribution will add top and bottom 

extra height. Figure 3 shows a sketch of the 

described beam only for visualization. 

 

 

 

 

 

Figure 3: Variable thick beam 

 

The beam model will be obtained using the 

finite element method (FEM). Each element 

fi 

fj 

compliance 

surface 

C 

base beam 
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may exhibit a linear thickness variation, so 

the whole beam has piecewise linear 

thickness. 

 

The admissible load space will be represented 

by a collection of piecewise linear basis 

functions defined at specific locations along 

the beam. An arbitrary transverse piecewise 

linear loading applied to the beam is shown in 

Fig. 4a. Notice that the definition of more of 

basis functions expands the admissible load 

space. The piecewise linear basis functions 

shown in Fig. 4b are defined at five points: 1, 

2, 3, 4 and 5. A particular set 1, 2, 3, 4 and 5 

(the heights of the triangles in Fig. 4b reflects 

the loading in Fig. 4a. Points 1, 2, 3 ,4 and 5 

may not coincide with nodes of the finite 

element mesh. However, coincidence as in 

Fig. 4a is desirable in order to facilitate 

numerical procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Discretization of the loading distribution 

The loading distribution is actually described 

by the heights of triangles f1, f2, f3, f4and f5. If 

the height of triangle i is denoted by fi it can 

be written as in equation (8). 

 

iii fRf = ,             

(8) 

 

where if  is a scaling factor and 0 ≤ Ri ≤ 1 is 
the 

proportionality parameter that provides a 

measure of the contribution of each piecewise 

linear function to the applied loading. if  is 

selected such that the areas of all triangles in 

Fig. 4c are equal to some value Lf  as in 

equation (9) where m is the number of basis 

functions and L is the beam length. 
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Ri defines the contribution of each base 

function. In order to maintain the same 

resulting load Lf , the summation of all Ri’s 

must be as stated in equation (10). 
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The distributed loadings represented by 

piecewise linear basis functions may by 

applied as a convex combination according to 

equation (10) or individually. Figure 4b 

shows a case where the summation of the 

contribution of the all individual basis 

loading is equal to the resultant of the 

specified load of Fig. 4a. For the distribution i 

the resulting force Fi is given by: 

 

LfRF iii =            

(11) 

 

The min-max technique employed gives the 

worst loading distribution in terms of Ri. 

Despite the fact that f  is arbitrary, it is made 

equal do 1/L for the numerical simulations in 

this section. 

There is another constraint, besides the one 

stated in equation (10), related to the beam 

l45 l34 

f5 
f1 

3 

1f  

1 2 5 4 

(a) 

f4 

f2 

f3 

1 

(b) 

l23 l12 

1 

(c) 

2 3 4 5 

2f  3f  4f  

5f  

2 3 4 5 



                                   55th International Astronautical Congress 2004 - Vancouver, Canada

constant volume. Equation (12) states the 

second constraint in terms of thickness. 

 

( )hn
h

h
h n

n

i

i 1
22

1

2

1 −=++∑−
=

         

(12) 

 

where n is the number of nodes and h is the 

corresponding beam thickness, in case of 

constant thickness of the entire beam. 

Equations (10) and (12) impose bounds to the 

optimization problem stated in equation (7). 

 

Solution of the optimization problem initiates 

by assessing 10,000 random designs in order 

to reduce the risk of convergence to local 

optima. The best random point is chosen to 

start the Powell’s search [5]. Advantages of 

the Powell’s method are its simplicity and its 

independence of gradient information. This is 

particularly necessary in this application 

since function φ defined in equation (7) may 
not be smooth with respect to h. The 

optimization stops when the relative 

difference between the previous and present 

values of φ does not exceed 0.001. 
 

As an example a beam with different number 

of nodes and different number of basis 

functions is optimized for maximum 

compliance. The beam material is aluminum 

with Young modulus of 70 GPa and the beam 

length is 0.3 m. Also, the beam is simply 

supported at both ends. Figure 4 shows an 

example of the beam discretization, where the 

number of nodes can vary considering that all 

elements must have the same length for the 

entire beam. The equivalent uniformly 

distributed loading f  presented in equation 

(9) is chosen to give a unit resultant force Lf  

= 1 N. 

 

 

RESULTS AND CONCLUSIONS 

 

Depending on the mesh refinement different 

number of load cases may be used. Table 1 

shows the minimum compliances for a beam 

with base thickness of hbase = 0.5 mm 

obtained when n = 9 and h = 1.5 mm in 

equation (12). Columnwise it can be seen that 

more nodes imply more flexibility to sustain 

the uncertain load cases. If the number of 

nodes is fixed more load cases always leads 

to higher compliances. This is because the 

load space is broader what increases the 

chances of causing damage to the structure. 

 

number of load cases number 

of nodes 2 3 5 7 9 

3 3.716 5.486 - - - 

5 3.599 5.291 6.752 - - 

7 3.569 5.253 - 6.988 - 

9 3.559 5.241 6.712 - 7.069 

Table 1: Minimum beam compliances (µJ) 
 

In Table 1 the base beam thickness hbase and h 

were fixed. However, variation of both of 

them certainly affects the optimal design. If 

one maintains the sum h + hbase constant a 

greater h means more flexibility to the 

structure so it can adapt to withstand broader 

load spaces while a greater base beam 

thickness implies that the thickness 

distribution cannot vary as much what 

renders the structure vulnerable to loading 

variations. Table 2 shows the effects of the 

balance between h and hbase in the optimal 

compliance when 9 nodes are considered 

along with 5 load cases. It is clear from Table 

2 that fixing a design configuration is a bad 

strategy when there are multiple potential 

load cases. 

 

hbase (mm) h (mm) compliance (µJ) 
0.0 2.0 6.702 

0.5 1.5 6.712 

1.0 1.0 7.022 

1.5 0.5 7.673 

2.0 0.0 10.77 

Table 2: Effect of thickness variability 

 

Making h + hbase constant is equivalent to 

admitting that a fixed amount of structural 

mass is available for the optimization. When 

h = 0 the thickness distribution is perfectly 

uniform and there is no room for 

redistribution of the available material in 

order to better withstand the loading space. 

Figure 5 shows the thickness distribution of 

the optimal designs. 
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hbase = 2.0 mm

hbase = 1.5 mm

hbase = 0.5 mm

hbase = 0.0 mm

hbase = 1.0 mm

 

Figure 5: Optimal beams 

A new technique has been proposed for 

compliance minimization of structural 

components subjected to many loading 

combinations. In real applications it is not 

unusual to have structures that experience 

many different load cases during operation. 

In particular, structural components for 

aerospace applications must withstand severe 

loads while operating in hostile 

environmental conditions. For example, a 

vertical control surface (rudder) of an aircraft 

is subjected to approximately 100 important 

load cases, including but not limited to 

maneuver loads, gust loads and landing loads. 

When an airplane rudder is optimized for 

minimum weight, maximum strain 

constraints are frequently active; either the 

spars or the panels could fail due to large 

stresses. Therefore, minimizing compliance 

becomes an important factor in the design of 

efficient, lightweight control surfaces. 
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