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Abstract 
 
This paper presents the mathematical model for a large space structure containing a robotic manipulator that 
translates along the station and is used to execute operations of grasping satellites to be fixed by astronauts. The 
control efforts are evaluated in two different configurations. One configuration is characterized by a flexible 
LSS carrying a flexible robotic manipulator. The manipulator is kept in a fixed position on the station. The 
computational control problem solution for this case includes the jitter effect associated with the various 
motions along and inside the station and the astronauts walk perturbation on the LSS as input noises. The whole 
system is excited in rotation and vibration. Then the LQG technique is applied to damp the vibration and at the 
same time to drive the attitude motion to a nominal operating mode, defined as that of the Earth pointing 
configuration. The second configuration considers the LSS main bus as a rigid body carrying the flexible 
manipulator that is allowed to rotate and translate along the station. The manipulator is driven to a certain 
position while the vibration and the rotation are controlled by the system control. For this case a different 
control technique is used. This control technique is known as back step technique. This technique allows for the 
motion of the robotic manipulator to a different final position than zero. Then the vibration is damped so as to 
allow for the grasping operation. A series of small pulses is used to approach the astronaut walk from one 
position to another when executing their work in space. The space walk shall not be thought as regular men 
walking on the ground. The astronaut walk represents the motion of the astronauts from one position to another 
to develop their space activities, mainly the LSS outside activities.  
 
 
 
 

 
Introduction 

 
Since the successful Sputnik mission in 

1957 vast resources have been driven for space 
systems development. The results are revolutionary 
in the communication systems, weather prediction, 
resource administration and navigation, scientific 
improvement in understanding of our planet, our 
solar system, and the universe. The space activities 
necessary for some missions at the present time 
differ very much from those of the early days of the 
space age. The manned spacecraft that started with 
the in-orbit astronaut walks linked by a type of 
umbilical cable are today large space stations that 
include facilities for astronauts in-orbit work by 
using robot manipulators and autonomous associate 
technologies. The challenges associated with 
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manned space activities gave a great impulse to the 
development of space robotics. Manned operations 
require an enormous treaty of risk and are highly 
expensive because of the associate requirements for 
room, reliability and life support. In this sense the 
use of such robotic manipulators and other forms of 
automation are very attractive. However, 
completely autonomous systems to operate in orbit 
are not available so far. The in-orbit work still 
requires manned interaction from the ground or 
space sites. This fact has many technological 
implications that go from mathematical modeling 
and control law design, to on-board based software 
and state of the art technological sensors and 
actuator selection to allow for monitoring, tracking, 
docking, and controlling the space vehicle attitude. 
In addition to this, large space structures face 
structural flexibility problems. Because of the high 
cost of putting massive objects in space, the 
guideline is to optimize the weight of the space 
structure. On the other hand the weight 
minimization is constrained by the flexibility since 
very flexible systems are difficult to control. In 
other words it is necessary to look for the lightest 
structure with the highest possible stiffness. Further 
the space zero-g environment requires extra care 
when the robot manipulators operate. Differently 
from on-ground based manipulators the space 
manipulators operate on a mobile base1. This fact 
requires taking into account the relative motion 
between the main bus and the object that is grasped 
and moved along the main bus structure. It is worth 
noting that not only the satellites can be grasped 
and moved along the space station but also other 
objects. Also the astronauts move to execute 
extravehicular activity (EVA) and intravehicular 
activity (IVA). These motions disturb the center of 
mass of the system and may cause jitter. All these 
affect the control effort to keep the station in a 
stable attitude configuration as well as in a level of 
vibration that do not risk the space operation and 
make the astronaut work safely and as comfortable 
as possible. 
This work deals with the study of the control 
efforts in two different configurations. One refers 
to the whole station and the robotic manipulator 
moving and vibrating around a nominal operating 
mode. This mode is defined as the earth-pointing 
attitude of the station. Small elastic displacements 
are assumed. In other word the elastic displacement 
oscillates about zero (non deformed structure) and 
the pitch angle is slightly misaligned with respect 
to the local vertical.  The motion is constrained to 
be in a low earth circular orbit. In this 
configuration the LQG2 technique is used to damp 
the elastic vibration and the rigid body motion 
represented by the pitch, roll, and yaw attitude 
angles and the manipulator arms rotation angles. 

The mathematical model is obtained by a 
combination of finite element technique and the 
Lagrangian formulation for quasi and generalized 
coordinates. The second configuration is defined by 
the robotic manipulator translating on the station 
while the attitude control keeps the whole system 
stable in attitude. A torque motor activates the 
manipulator base from one position to another. 
Then the manipulator base is locked and the 
vibration is suppressed. After the manipulator 
locking and the vibration suppressing the 
manipulator arm is driven from zero to a 30-
degrees position. The manipulator rotational and 
vibrational motions are suppressed by using the 
controller. For the configuration two the assumed 
modes method was used to obtain the equations of 
motion as ordinary differential equations.  
 

LSS Equations of Motion 
 

The mathematical model for the first case 
under study has been developed in reference 3. 
Two different approaches have been used to model 
the LSS. The first approach combines the finite 
element technique with the Lagrangian formulation 
for quasi and for generalized coordinates to obtain 
the system equations. In this formulation the 
system center of mass has been considered as fixed. 
For this model the Linear Quadratic Gaussian 
regulator, LQG has been designed to control the 
attitude and the vibration of the station. The main 
steps of the problem formulation (for this case) by 
using the finite elements in conjunction with the 
Lagrangian formulation are: 
• Divide the main bus into finite elements; 
• Approach the elements by tubular beam 

elements and use appropriate beam element 
functions 

• Derive the kinetic energy for the ith element 
• Derive the elastic potential energy for the finite 

element 
• Assemble the mass and the stiffness matrix 

according to the finite element technique 
• Derive the expression for the gravity-gradient 

torque 
• Write the Lagrangian function given by the 

difference between kinetic energy and the 
potential elastic and gravitational energy 

• Use the Lagrange’s formula for quasi and 
generalized coordinates to obtain the equations 
of the dynamics 

• Linearize the equations about the gravity-
gradient stable configuration and the 
nondeformed structure (elastic displacement) 

• Write the system state equations 
• Design an appropriate control law (in this case 

the optimal control law represented by the 
LQG technique) 
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• Implement the control by using the 
MatLab®/Simulink computer environment 

• Analyze the results.  
 
The non linear equations for this case are given by4 
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In these formulas L is the Lagrangian function. { }ω  
refers to the station angular velocity vector and the 
qi refers to the LSS flexible and the robot 
manipulator flexible and rotational degrees-of-
freedom. [ ]ω~ is a skew symmetric matrix in the 
components of { }ω . T is the kinetic energy. Mo is 
the external torque vector, associated with the 
gravity-gradient torque and fo is the control torque 
vector. iqQ represents the generalized forces. The 
above formulas have been used to derive the 
equations of the dynamics for both models, the one 
formulated by using the finite element methods 

hereafter called FEM Model, and the other by using 
the assumed modes method. The details of the LSS 
physical model and the mathematical FEM model 
derivation are shown in reference 3. Figure 1 shows 
the in-orbit configuration of the LSS 
 

 
 
Figures 2 and 3 show details of the structure that 
have been used to guide the derivation of the 
equations of the dynamics. 

 

 
 

Fig. 2  - jth finite elements, left and right side of the main bus 
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The equations of the dynamics for the FEM model 
can be written as 
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Here the rate of change in time of the { }ω  
is written in terms of the Euler angles (roll, yaw, 
and pitch, depicted by ψ . The vector {e} includes 
all the elastic displacement and the robot 
manipulator arms rigid body motion. [E] is 
coefficient matrix of the vector {e}. [K] is the 
structural stiffness matrix. [m] is the elastic 
structural elastic displacement coefficient matrix. 
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Fig. 3 – Space station components – Finite elements and elemental mass (dmp, dma1, and 
dma2 ) positions 
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Here oΩ  stands for the orbital velocity and is 
constant because we have assumed the orbit 
circular. The off-diagonal elements of [G] are 
associated with gravity-gradient torque 
components. [J] is the LSS inertia matrix whose 
components are the principal moments of inertia 
around the roll, yaw, and pitch axes, respectively, 
The LQG control problem formulation requires the 
development of the state matrix or plant matrix. In 
order to obtain this matrix let us define the state 
vector as 
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The system equations can be rearranged to write 
the state equation in the classical form: 
 
{ } [ ]{ } [ ]{ }uBxAx +=&  (3) 
 
 

LQG Control Law Design 
 
The control law technique used to control the FEM 
Model is based on the Linear-Quadratic-Gaussian, 
LQG, optimal control design. The LQG is a 
modern state-space technique for designing optimal 
dynamic regulators. It allows for trade-off between 
regulation performance and control effort, and 
takes into account process disturbances and 
measurement noise. The LQG regulator consists of 
an optimal state-feedback gain and a Kalman filter 
state estimator. This technique requires a state-
space model of the plant as given by Eq.(3)  with 
the addition of the noise effect as shown in Eq.(4). 
So the problem formulation can be stated as 
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where {yv} is the measurement equation with 
known inputs and processes the noise {w} and {v}. 
The regulation index is given by a quadratic 
performance criterion of the form  
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where [Q], [N], and [R] are weighting matrices 
that defines the trade-off between regulation 
performance and control effort, i.e., how fast the 
state space component x(t) goes to zero. In this 
work the correlation matrix [N] is not taken into 
account. 
The Kalman filter can be state as:  
Given the inputs, the process and measurements 
white noises {w} and {v} satisfying  
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construct the state estimate {x} that minimizes the 
steady-state error covariance 
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The optimal solution is the Kalman filter with 
equations 
 
{ } { } { } { } { }( )u]D[x̂]C[y]L[u]B[x̂]A[x̂ v −−++=
 
 
where L is known as the filter gain and is computed 
by solving an algebraic Riccati equation.  

The FEM Model vibrational and rotational 
control has been implemented by using the 
MatLab®/Simulink software package. The block 
diagrams as they were implemented in the 
MatLab/®Simulink is shown in figures 4 to 7. The 
reference shown in the first block (left) requires the 
control system to guide the station to a 
configuration characterized by zero roll, yaw, and 
pitch angles as well as the robotic manipulator arm 
angles. Details of the input noise are shown in 
figure 5. The Kalman Filter block diagram is 
shown in figure 6. The block on the top describes 
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the perturbation caused by the astronauts walk and 
other source of jitter. The astronaut walk 
perturbation has been approached by a discrete 
sequence of pulses and other jitter effects were 
approached by a sinusoidal function. The details of 
that input noise are shown in figure 7.  

The second model has been derived by 
using the Lagrangian formulation for generalized 
coordinates4 and the Newton-Kirchhoff formulation 
for the electromechanical equations. These 
equations account for the motor torque equations. 
Differently from the previous model, the elastic 
displacement has been approached by the assumed 
modes method5 in the form of a product of space 
dependent functions by time dependent generalized 
coordinates. This method allows for model 
simplification by taking into account in the 
problem formulation only the elastic degrees-of-
freedom previously chosen. The assumed modes 
method does not require choosing a strict space 
dependent function to represent the elastic motion. 
The main requirement is that the space dependent 
function be compatible with the geometrical 
boundary conditions. No natural boundary 
conditions are required in the assumed modes 
method formulation. The physical model for this 
second case study is shown in figure 8. The 
manipulator translates along the station (ro(t)) while 
it rotates (θ(t)) and vibrates (v(x,t)). The 
mathematical model takes into account the first 
elastic vibration mode, one robotic manipulator 
represented by one arm with a planar rotational 
degree-of-freedom and one translational degree-of-
freedom along the station. The equations of motion 
for this case are 
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It is worth noting that to move the manipulator in 
translation and rotation we consider two 
independent motors. One is a prismatic motor, to 
provide the manipulator translation along the LSS 
and the other is a revolute motor, responsible for 
the arm rotation. The motor equations are Eqs.(8) 
and Eq.(9) for the manipulator translation and 
rotation, respectively.  
In those equations iai

 (i=1,2) stands for the electrical 
variable (current), U1 and U2 stand for the control 
voltage. The other parameters are given in table 1. 

Table 1 – Parameter values used in the simulation 
Parameter Description Value (I.S.) 

ω1 Arm elastic 
fundamental 
frequency 

4.7846 Rad/Sec 

µ Structural damping  0.025 Sec-1 

α 
( )∫ φ
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dyyy
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0.82103 m 

 

β  
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0.7829 Rad 

mL  Electrical 
Inductance  

0.003100 Ω Sec 

bm Motor viscous 
damping 
coefficient 

0.004629 Kg/Sec 

Kb EMF constant 0.052814 AΩ Sec 
Kt Torque constant 0.052814 

Kg/ASec2 
Ng Transmission rate  1 
Ra Electrical 

resistance 
 1.914Ω 

R Motor ratio  0.1 m 
Ii (i=1,2)  Motor Inertias 
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This system equation can be written in the state 
form so as to yield the plant 
 
{ } [ ]{ } [ ]{ } { })x(UBxAx ζ++=&  
 
where B  is an 8x2 matrix with m,, L/BB 12613 == . 
The other matrix elements are zeros. 
 
{ }ζ  is a 1 x 8 vector with components equal to 
zero, except by 12,ζ , that is given by 
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The Backstepping6 technique is used to implement 
the nonlinear control for this second case. It is a 
stabilization technique, which applies to nonlinear 
systems with a particular structure in which the 
actual control input “trickles down” through a 
series of integrators to the level of a fundamental 
subsystem. The computer implementation of this 
technique can be seen in the Simulink block 
depicting the Backstepping technique, shown in 
figure 9. 

 

 
 
Fig 4 - Simulink block built to implement the LSS attitude dynamics and control 
 
 

 
Fig. 5 – Noise input details 
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Fig. 6 – Kalman filter block diagram 
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Fig. 7 – Jitter and astronaut walk representation 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 8- LSS physical model for the second case 
study 
 
 
 
 

 
Fig. 9 – Backstepping Simulink blocks  
 
 
 

Computer Simulations and Results 
 

The simulations were carried out to check the 
damping of the attitude angles to the reference 
position set to zero in yaw, roll and pitch. The same 
objective has guided the simulation regarding the 
robot arm. The control should take the robotic 
manipulator arms from an initial angular position 
of about 5 degrees to zero. Initial position in the 
elastic displacement has been set for the 
simulations and the control should drive them back 

to about zero. The structure’s parameters used to 
build the structural model are: 
 
• Material density = 1769 Kg/m3 
• Young’s Modulus = 7.3084e10 N/m2 
• Main Bus length = 100 m 
• Manipulator arms length = 10 m 
• Solar panel dimensions = 10 x 10 x 0.003 m 
• Average main bus diameter = 5 m 
• Manipulator arm diameter=0.01m

 
 

ro
r1 

y
x

ro1
y1 

x1 

θ

v(y,t) 



                                   55th International Astronautical Congress 2004 - Vancouver, Canada

 9

 
 

Fig. 10 – Pitch (green), roll (red), and yaw (blue) time history 
 
 

 
Fig. 11 – Manipulator arms 1 (green) and 2 (blue) time history 
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Fig. 12 – RMS tip displacement damping 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 – First link robotic manipulator tip vibration, first case study 
\ 
 
 
 
 

Fig. 13 – Manipulator first link tip vibration damping 
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Fig. 14 – Robot manipulator tip vibration for the case 2. 

 

 
 

Fig. 15 Robotic manipulator translation along the station 
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Fig. 16 – Robot arm angular displacement from zero to 30-degrees position 
 
 
Figure 10 shows the yaw, roll, and pitch angles 
control. Figure 11 shows the robot arm driving to 
zero. Note that for the first case study the reference 
is zero. This means that the attitude angles as well 
as the robot arm angles are all driven to zero. 
Figures 12 and 13 are related to the elastic 
displacements of the main bus tip and the second 
manipulator arm tip, respectively. Figures 14 to 16 
are related to the second case study. Figure 14 
traces the elastic vibration of the arm. Figure 15 
illustrates the arm translation from zero to a 10-
meter position. Figure 16 illustrates the arm 
rotation. Note that this operation happens after the 
manipulator is locked in the 10 meters position.  
The dynamic behavior is over damped.   
 

Conclusion 
 
The LQG control technique has been discussed and 
implemented aiming at the LSS attitude and 
structural vibration control. In a second step the 
LSS has been modeled by a long tubular structure 
carrying a one-link robot manipulator with a 
translational degree-of-freedom, in addition to the 
rotational and elastic degrees-of-freedom. The 
main features of the Backstepping technique were 
presented. The technique has been implemented for 
the second case studied in the paper. 
The MatLab®/Simulink software packages have 
been used to execute the simulations. Some of the 

software block diagrams has been shown to explain 
the LQG  and the Backstepping technique. 
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