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ABSTRACT 
The Morosov’s discrepancy principle has been 
used as a general criterion to compute the 
regularization parameter in inverse problems. The 
Morosov’s principle is established when the 
discrepancy of the corresponding regularized 
solution is just equal to the measurement error. 
Considering the measurement error as a random 
variable, the goal of this paper is to present a 
generalized discrepancy principle for distributions 
in which the second moment is not defined. The 
generalized discrepancy principle is applied to 
several distributions: uniform, Gaussian, Cauchy, 
t-Student, Tsallis. The estimation of the initial 
condition in a heat transport problem is used as a 
test-problem. 

 
INTRODUCTION 
The Morosov’s discrepancy principle [1-3] has 
been used as a general criterion to compute the 
regularization parameter in inverse problems. 
Essentially, the criterion is to calculate the root of 
the equation: 
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being K(x) the forward model, Yδ  is the measured 
quantity, δ  is the error of the measurement, and 

Y
⋅  is a norm in the Y  space. A heuristic 

procedure can be established to compute the root 
of equation (1) when the measured error is 
normally distributed (the probability density 
function is Gaussian), with zero mean and σ2 
variance (see [2], page 238). In this work a 
generalized discrepancy principle is presented, 
considering distributions in which the second 
moment is not defined. The generalized 
discrepancy principle is applied to several 

distributions: uniform, Gaussian, Cauchy, t-
Student, Tsallis. The estimation of the initial 
condition in a heat transport problem is used as a 
test-problem. 
 
FORWARD TEST PROBLEM 

The direct (forward) problem consists of a 
transient heat conduction problem in a slab with 
adiabatic boundary condition and initially at a 
temperature denoted by f(x). The mathematical 
formulation of this problem is given by the 
following heat equation 
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where T(x,t) (temperature), f(x)  (initial 
condition), x (spatial variable) and t (time 
variable) are dimensionless quantities and 
Λ=[0,1]. The set of partial differential equations is 
solved by using a central finite difference 
approximation for space variable O(∆x2), and 
explit Euler method for numerical time 
integration O(∆t) [3]. 

The forward problem solution, for a given 
initial condition f(x), is explicitly obtained using 
separation of variables, for (x,,t) ∈ Ω  × R+:  

 

∫∑
+∞

=

−=
1

0'

'''

0

)(),(),(
)(

1
),(

2

dxxfxXxX
N

etxT m
m

m
m

tm ββ
β

β

                                                                            (3) 
 

where X(βm,x) = cos(βmx) are the eigenfunctions 
associated to the problem, βm = mπ  are the 
eigenvalues, and N(βm)= ∫Ω

′′′ xdxfxX m )(),(β  
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represents the integral normalization (or the 
norm) [4]. The inverse problem consists in 
estimating the initial temperature profile f(x) for a 
given transient temperature distribution T(x,t) at 
time τ. 

This problem has been extensively used for 
testing different methodologies in inverse 
problems [5–9], and it is badly conditioned 
problem [5]. 
 
INVERSE ANALYSIS  

In general, inverse problems belong to the 
class of ill-posed problems, where existence, 
uniqueness and stability of their solutions cannot 
be ensured. Following the Tikhonov’s approach 
[10], a regularized solution is obtained by 
choosing the function f* that minimizes the 
following functional 
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where ),(

~~
τxTT =  is the experimental data (t=τ), 

T(f) is the temperature computed from the 
forward model at time τ, Ω[f] denotes the 
regularization term given, α  is the regularization 
parameter, and 

2
⋅  is the 2-norm. 

A scheme to determine the regularization 
parameter α is the Morozov's discrepancy 
principle: assuming that a bound δ (or the 
'statistics’) of the measurement error is known, 
i.e., δ≤−

2exact

~
TT . 

 
The Morosov’s Discrepancy Principle 

For establishing a scheme to compute the 
regularization parameter, it is necessary to define 
the quantites: the residue R(fα) and the error E(fα) 
are defined by 
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The Morosov’s standard discrepancy principle is 
an a-posteriori parameter choice rule. It demands  
that a suitable regularized solution can be 
obtained under the condition: 
 
         R(f*) ≅ Nxσ

2                                               (6) 
 
corresponding the  optimum value for  α - the 
regularization parameter, and assuming that σ2 is 
the variance associate to a Gaussian distribution. 

The last hypothesis can be justified by central 
limit  theorem [11], and considering that the 
components of the random vector are uncorrelated 
(white Gaussian noise). The condition (6) is a 
particular case of the Morosov’s discrepancy 
principle.  
        
Optimization Algorithm  

The optimization problem is iteratively solved 
by the quasinewtonian optimizer routine from the 
NAG Fortran Library [12], with variable metrics. 
This algorithm is designed to minimize an 
arbitrary smooth function subject to constraints 
(simple bound, linear or nonlinear constraints), 
using a sequential programming method.  

This routine has been successfully used in 
several previous works: in geophysics, hydrologic 
optics, and meteorology. 
 
ESTIMATING INITIAL CONDITION 

Numerical experiments are carried out using 
two test functions, the triangular function 
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and semi-triangular function 
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In order to simulate the experimental data 

(measured temperatures at a time τ>0), which 
intrinsically should contain errors, a random 
perturbation is added to the exact solution of the 
direct problem, such that 

 

σν+= exact
~

TT        (8) 
 

where σ  is the standard deviation of the errors 
and ν  is a random variable taken from a statistical 
distribution, with zero mean and unitary variance. 
All tests were carried out using 5% of noise 
(σ=0.05). 

It is important to observe that the spatial grid 
consists of 101 points (Nx=101), and the time-
integration is performed up to τ=0.01. If we 
effectively want to apply some kind of 
regularization, which means α>0 in Eq. (5), then  
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the discrepancy principle - an a-posteriori 
parameter choice rule - implies  that a suitable 
regularized solution can be obtained. Since the 
spatial resolution is  Nx=101, the optimum α is 
reached for R(f*) ~ Nxσ

2 = 0.2525 (according to 
the condition (6)). 

The parameter vector was always subjected to 
the following simple bounds: 1.2 ≥ fk ≥ -0.2 for 
the triangular test function, and 1.2 ≥ fk ≥ 0 for the 
semi-triangular test function, with k = 1, 2, …, Nx. 
 
Probability Density Functions (PDF) 
      For generating the random variable in Eq. (8), 
several distributions have been considered. 
 
- Uniform distribution: 
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- Normal (Gaussian) distribution: 
 

2

2
1

2

1
)(








 −
−

= σ
µ

πσ
ρ

x

ex                           (10) 

 
where µ  and σ  are mean and standard 
deviation, respectively. 
 
- Cauchy’s distribution: 
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where t is the location parameter and s is the scale 
parameter. The case where t=0 and s=1  is called 
the standard Cauchy distribution, and the PDF 
reduces to 
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- Student’s t distribution: 
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where a is a parameter, and Γ  is the Gamma 
function. 
 
- Tsallis’s distribution: 

 
A non-extensive form of entropy has been 

proposed by Tsallis [15]: 
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where pi is a probability, and q is a free parameter 
– it is called the non-extensivity parameter, and 
the parameter q has a central role in Tsallis’ 
thermostatiscs. In thermodynamics the parameter 
k  is known as the Boltzmann’s constant. Tsallis’ 
entropy reduces to the the usual Boltzmann-
Gibbs-Shanon formula 
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in the limit q→1. 

As for extensive form of entropy, the 
equiprobability condition produces the maximum 
for the non-extensive entropy function, and this 
condition leads to special distributions: 

 
q > 0: 
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if 2/1)]1/()3[( qqx −−< σ ,  ρ(x)=0 otherwise. 
These PDFs are shown in Figure 1. 

For q<5/3, the standard central limit theorem 
applies, implying that if pi is written as a sum of 
M random independent variables, in the limit case 
M→∞, the probability density function for pi in 
the distribution space is the normal (Gaussian) 
distribution [6]. However, for 5/3<q<3 the Levy-
Gnedenko’s  central limit theorem applies, 
resulting for M→∞ the Levy distribution as the 
probability density function for the random 
variable pi . The index in such Levy distribution is 
γ=(3-q)/(q-1) [16]. 

 
 

 
 
Figure 1. Tsallis’ Distribution with q=0, q=1, q=2 
and q=2.9. 
 
Generalized Discrepancy Principle 
      Should be noted that Cauchy’s distribution 
(11), Studend’s t distribution, and Tsallis’s 
distribution (with q > 5/3), them second statistical 
moments diverge (σ2 → ∞).  
      Firstly, all distributions are normalized (when 
this is possible) for σ2=1. For distributions with 
divergent variance, a modified PDF is considered, 
in a such way that a parameter d is chosen for 
satisfying the relation 
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d
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The PDF and this new domain [-d , d] is now used 
for generating the random variable ν in Eq. (8), 
and the discrepancy principle can be applied for 
any distribution type. 
 

Numerical Results  
The numerical experiments were carried out 

for many realizations (10). For each experiment, 
new different random numbers were generated. 
For all cases the deviation was assumed as  
σ=0.05, as mentioned before, and the discrepancy 
principle (6) was used to compute the 
regularization parameter. 

Tables 1 and 2 show computed values for 
regularization parameter using the generalized 
discrepancy principle. Inverse solutions are 
depicted in figures below. 

 
Table 1. Triangular test function 

Distribution α  )( αfE  )( ασ fE  

Uniform 722.57 0.3929 0.0396 
Normal 719.42 0.3738 0.0327 
Cauchy 685.69 0.3956 0.0499 

Student’s t 719.10 0.4112 0.0576 
Tsallis (q=1.5) 648.49 0.3589 0.0594 
Tsallis (q=0.5) 767.34 0.4268 0.0470 

 
Table 2. Semi-triangular test function 

Distribution α  )( αfE  )( ασ fE  

Uniform 682.01 0.4698 0.0895 
Normal 676.58 0.4571 0.0509 
Cauchy 632.44 0.4777 0.1045 

Student’s t 677.19 0.5311 0.1197 
Tsallis (q=1.5) 601.23 0.4580 0.0786 
Tsallis (q=0.5) 737.94 0.5383 0.0726 

 
 
- Uniform distribution: 
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Figure 2. Initial condition estimation, with 
uniform distribution noise. 
 
- Normal (Gaussian) distribution: 
 

 
 
 

 
Figure 3. Initial condition estimation, with normal 
distribution noise. 
 

- Cauchy’s distribution: 
 

 
 

 
 
Figure 4. Initial condition estimation, with 
Cauchy distribution noise. 
 
- Tsallis’s distribution: 
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Figure 5. Initial condition estimation, with Tsallis 
distribution noise (q=1.5). 

 
 

 
 

 
Figure 6. Initial condition estimation, with Tsallis 
distribution noise (q=0.5). 
   
CONCLUSION 

It was shown that the  discrepancy principle 
can be adapted for situations where the error 

random variable can follow other statistical 
distributions instead of Gaussian distribution. 
Even those distributions that do not have a 
defined variance, the PDF of the random number 
generator can be modified, becoming possible to 
apply the discrepancy principle. For the worked 
examples, the regularization parameter can be 
determined as exposed, producing good inverse 
solutions. 
 
ACKNOWLEDGEMENTS  
The authors thanks to the FAPESP and CNPq, 
Brazilian agencies for research financial support, 
and an anonymous referee, whose comments 
improved this version of the paper. 
 
REFERENCES 
      1. V. A. Morosov, On the Solution of 
Functional Equations by the Method of 
Regularization, Soviet Math. Dokl., 7, pp.414 
(1966). 
      2. V. A. Morosov, Methods for Solving 
Incorrectly Posed Problems, Springer Verlag 
(1984). 
      3. V. A. Morozov, Regularization Methods for 
Ill-Posed Problems, CRC Press (1992).  
      4. J.D. Hoffmann, Numerical Methods for 
Engineers and Scientists, McGraw-Hill, 1993. 
      5. M. N. Özisik, Heat Conduction, Wiley 
Interscience (1980). 
      6. W.B. Muniz, F.M. Ramos, H.F. de Campos 
Velho, Entropy- and Tikhonov-based 
Regularization Techniques Applied to the 
Backwards Heat Equation, Comput. Math. Appl., 
40(8/9), pp.1071 (2000). 
      7. W.B. Muniz, F.M. Ramos and H.F. de 
Campos Velho, Entropy- and Tikhonov-based 
regularization techniques applied to the 
backwards heat equation, Comp. Math.  Appl., 40, 
pp.1071 (2000).  
     8. E.H. Shiguemori, H.F. de Campos Velho, 
J.D.S. da Silva (2002): Estimation of Initial 
Condition in Heat Conduction by Neural 
Network, 4th International Conference on Inverse 
Problems in Engineering: Theory and Practice 
(ICIPE-2002), May 26-31, Angra dos Reis (RJ), 
Brazil - Proc. in CD-Rom: paper code 092 –  
Proc. Book: Inverse Problems in Engineering: 
Theory and Pratice (Editor Helcio R. B. Orlande), 
Vol. II, Part Heat and Mass Transfer, pp. 251 - [=] 
e-papers, Rio de Janeiro, Brazil (2002). 
      9. L.D. Chiwiacowsky, H.F. de Campos 
Velho, Different Approaches for the Solution of a 



Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

Backward Heat Conduction Problem, Inverse 
Problems in Engineering, 11(3), pp.471 (2003). 
      10. L.D. Chiwiacowsky, H.F. de Campos 
Velho, A.J. Preto, S. Stephany, Identifying Initial 
Condition in Heat Conduction Transfer by a 
Genetic Algorithm: A Parallel Approach, Iberian 
Latin-american Congress on Computational 
Methods in Engineering (CILAMCE-2003), 29-
31 October, Ouro Preto (MG), Brazil - Proc. in 
CD-Rom: paper code cil261-37, Abstract Book 
pp. 180 (2003). 

 11. A.N. Tikhonov and V.I. Arsenin, 
Solutions of Ill-posed Problems, John Wiley & 
Sons, 1977. 

12. A. Papoulis, Probability and Statistics, 
Pearson Higher Education (1989).  

13. E04UCF routine, NAG Fortran Library 
Mark 17, Oxford, UK (1995). 

14. C. Tsallis, Possible generalization of 
Boltzmann-Gibbs statistics, J. Statistical Physics, 
52, 479 (1988). 

15. C. Tsallis, Nonextensive statistics: 
theoretical, experimental and computational 
evidences and connections, Braz. J.  Phys., 29, 1 
(1999). 

 


