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Abstract. A challenge in hybrid evolutionary algorithms is to define
efficient strategies to cover all search space, applying local search only in
actually promising search areas. This paper proposes a way of detecting
promising search areas based on clustering. In this approach, an iterative
clustering works simultaneously to an evolutionary algorithm account-
ing the activity (selections or updatings) in search areas and identifying
which of them deserves a special interest. The search strategy becomes
more aggressive in such detected areas by applying local search. A first
application to unconstrained numerical optimization is developed, show-
ing the competitiveness of the method.
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1 Introduction

In the hybrid evolutionary algorithm scenario, the inspiration in nature have
been pursued to design flexible, coherent and efficient computational models.
The main focus of such models are real-world problems, considering the known
little effectiveness of canonical genetic algorithms (GAs) in dealing with them.
Investments have been made in new methods, which the evolutionary process
is only part of the whole search process. Due to their intrinsic features, GAs
are employed as a generator of promising search areas (search subspaces), which
are more intensively inspected by a heuristic component. This scenario comes to
reinforce the parallelism of evolutionary algorithms.

Promising search areas can be detected by fit or frequency merits. By fit
merits, the fitness of the solutions can be used to say how good their neighbor-
hood are. On other hand, in frequency merits, the evolutionary process naturally
privileges the good search areas by a more intensive sampling in them. Figure 1
shows the 2-dimensional contour map of a test function known as Langerman.
The points are candidate solutions over fitness surface in a typical simulation.
One can note their agglomeration over the promising search areas.
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Fig. 1. Convergence of typical GA into fitter areas

The main difficulty of GAs is a lack of exploitation moves. Some promising
search areas are not found, or even being found, such areas are not consistently
exploited. The natural convergence of GAs also contributes for losing the refer-
ence to all promising search areas, implicating in poor performance.

Local search methods have been combined with GAs in different ways to
solve multimodal numerical functions more efficiently. Gradient as well as direct
search methods have been employed as exploitation tool. In the Simplex Genetic
Algorithm Hybrid [1], a probabilistic version of Nelder and Mead Simplex [2] is
applied in the elite of population. In [3], good results are obtained just by apply-
ing a conjugate gradient method as mutation operator, with certain probability.
In the Population-Training Algorithm [4], improvement heuristics are employed
in fitness definition, guiding the population to settle down in search areas where
the individuals can not be improved by such heuristics. All those approaches
report an increase in function calls that can be prohibitive in optimization of
complex computational functions.

The main challenge in such hybrid methods is the definition of efficient strate-
gies to cover all search space, applying local search only in actually promising
areas. Elitism plays an important role towards achieving this goal, once the best
individuals represent such promising search area, a priori. But the elite of popu-
lation can be concentrated in few areas and thus the exploitation moves are not
rationally applied.

More recently, a different strategy was proposed to employ local search more
rationally: the Continuous Hybrid Algorithm (CHA) [5]. The evolutionary pro-
cess run normally until be detected a promising search area. The promising area
is detected when the highest distance between the best individual and other in-
dividuals of the population is smaller than a given radius, i.e., when population
diversity is lost. Thereafter, the search domain is reduced, an initial simplex is
built inside the area around the best found individual, and a local search based
upon Nelder and Mead Simplex is started. With respect to detection of promising
areas, the CHA has a limitation. The exploitation is started once, after diversity
loss, and the evolutionary process can not be continued afterwards, unless a new
population takes place.

Another approach attempting to find out relevant areas for numerical opti-
mization is called UEGO by its authors. UEGO is a parallel hill climber, not an
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evolutionary algorithm. The separated hill climbers work in restricted search ar-
eas (or clusters) of the search space. The volume of the clusters decreases as the
search proceeds, which results in a cooling effect similar to simulated annealing
[6]. UEGO do not work so well as CHA for high dimensional functions.

Several evolutionary approaches have evoked the concept of species, when
dealing with optimization of multimodal and multiobjective functions [6],[7].
The basic idea is to divide the population into several species according to their
similarity. Each species is built around a dominating individual, staying in a
delimited area.

This paper proposes an alternative way of detecting promising search ar-
eas based on clustering. This approach is called Evolutionary Clustering Search
(ECS). In this scenario, groups of individuals (clusters) with some similarities
(for example, individuals inside a neighborhood) are represented by a dominat-
ing individual. The interaction between inner individuals determines some kind
of exploitation moves in the cluster. The clusters work as sliding windows, fram-
ing the search areas. Groups of mutually close points hopefully can correspond
to relevant areas of attraction. Such areas are exploited as soon as they are
discovered, not at the end the process. An improvement in convergence speed
is expected, as well as a decrease in computational efforts, by applying local
optimizers rationally.

The remainder of this paper is organized as follows. Section 2 describes the
basic ideas and conceptual components of ECS. An application to unconstrained
numerical optimization is presented in section 3, as well as the experiments
performed to show the effectiveness of the method. The findings and conclusions
are summarized in section 4.

2 Evolutionary Clustering Search

The Evolutionary Clustering Search (ECS) employs clustering for detecting promis-
ing areas of the search space. It is particularly interesting to find out such areas
as soon as possible to change the search strategy over them. An area can be
seen as an abstract search subspace defined by a neighborhood relationship in
genotype space.

The ECS attempts to locate promising search areas by framing them by
clusters. A cluster can be defined as a tuple G = {c, r, s}, where c and r are the
center and the radius of the area, respectively. There also exists a search strategy
s associated to the cluster. The radius of a search area is the distance from its
center to the edge.

Initially, the center c is obtained randomly and progressively it tends to slip
along really promising points in the close subspace. The total cluster volume is
defined by the radius r and can be calculated, considering the problem nature.
The important is that r must define a search subspace suitable to be exploited
by aggressive search strategies.

In numerical optimization, it is possible to define r in a way that all search
space is covered depending on the maximum number of clusters. In combinatorial
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optimization, r can be defined as a function of some distance metric, such as the
number of movements needed to change a solution inside a neighborhood. Note
that neighborhood, in this case, must also be related with the search strategy s
of the cluster. The search strategy s is a kind of local search to be employed into
the clusters and considering the parameters c and r. The appropriated conditions
are related with the search area becoming promising.

2.1 Components

The main ECS components are conceptually described here. Details of imple-
mentation are left to be explained later. The ECS consist of four conceptually
independent parts: (a) an evolutionary algorithm (EA); (b) an iterative cluster-
ing (IC); (c) an analyzer module (AM); and (d) a local searcher (LS). Figure 2
brings the ECS conceptual design.

Fig. 2. ECS components

The EA works as a full-time solution generator. The population evolves in-
dependently of the remaining parts. Individuals are selected, crossed over, and
updated for the next generations. This entire process works like an infinite loop,
where the population is going to be modified along the generations.

The IC aims to gather similar information (solutions represented by indi-
viduals) into groups, maintaining a representative solution associated to this
information, named the center of cluster. The term information is used here be-
cause the individuals are not directly grouped, but the similar information they
represent. Any candidate solution that is not part of the population is called
information. To avoid extra computational effort, IC is designed as an iterative
process that forms groups by reading the individuals being selected or updated
by EA. A similarity degree, based upon some distance metric, must be defined,
a priori, to allow the clustering process.

The AM provides an analysis of each cluster, in regular intervals of gener-
ations, indicating a probable promising cluster. Typically, the density of the
cluster is used in this analysis, that is, the number of selections or updatings
recently happened. The AM is also responsible by eliminating the clusters with
lower densities.

At last, the LS is an internal searcher module that provides the exploitation
of a supposed promising search area, framed by cluster. This process can happen
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after AM having discovered a target cluster or it can be a continuous process,
inherent to the IC, being performed whenever a new point is grouped.

2.2 The clustering process

The clustering process described here is based upon Yager’s work, which says
that a system can learn about an external environment with the participation
of previously learned beliefs of the own system [8],[9].

The IC is the ECS’s core, working as an information classifier, keeping in
the system only relevant information, and driving a search intensification in the
promising search areas. To avoid propagation of unnecessary information, the
local search is performed without generating other points, keeping the popula-
tion diversified. In other words, clusters concentrate all information necessary to
exploit framed search areas.

All information generated by EA (individuals) passes by IC that attempts to
group as known information, according to a distance metric. If the information
is considered sufficiently new, it is kept as a center in a new cluster. Otherwise,
redundant information activates a cluster, causing some kind of perturbation in
it. This perturbation means an assimilation process, where the knowledge (center
of the cluster) is updated by the innovative received information.

The assimilation process is applied over the center c, considering the new
generated individual p. It can be done by: (a) a random recombination process
between c and p, (b) deterministic move of c in the direction of p, or (c) samples
taken between c and p. Assimilation types (a) and (b) generate only one internal
point to be evaluated afterwards. Assimilation type (c), instead, can generate
several internal points or even external ones, holding the best evaluated one to
be the new center, for example. It seems to be advantageous, but clearly costly.
These exploratory moves are commonly referred in path relinking theory [10].

Whenever a cluster reaches a certain density, meaning that some information
template becomes predominantly generated by the evolutionary process, such
information cluster must be better investigated to accelerate the convergence
process in it. The cluster activity is measured in regular intervals of generations.
Clusters with lower density are eliminated, as part of a mechanism that will
allow to create other centers of information, keeping framed the most active of
them. The cluster elimination does not affect the population. Only the center of
information is considered irrelevant for the process.

3 ECS for unconstrained numerical optimization

A sequential real-coded version of ECS for unconstrained numerical optimiza-
tion is presented in this section. Several test functions can be found in literature
related to unconstrained numerical optimization (or function parameter opti-
mization). The general presentation of such problems is:

min / max f(x), x = (x1, x2, x3, . . . , xn)T ∈ Rn (1)
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where Li < xi < Ui

In test functions, the upper Ui and lower Li bounds are defined a priori and
they are part of the problem, bounding the search space over the challenger
areas in function surface. This work uses some of well-known test functions,
such as Michalewicz, Langerman, Shekel [11], Rosenbrock, Sphere [12], Schwefel,
Griewank, and Rastrigin [13]. Table 1 shows all test functions, their respective
known optimal solution and bounds.

Table 1. Test functions

Function var opt Li; Ui Function var opt Li; Ui Function var opt Li; Ui
Ackley n 0 -15 ; 30 Goldstein 2 3 -2 ; 2 Zakharov n 0 -5 ; 10
Sphere n 0 -5.12;5.12 Griewank n 0 -600; 600 Rastrigin n 0 -5.12;5.12
Easom 2 -1 -100;100 Hartman 6 -3.322 0 ; 1 Rosenbrock n 0 -5.12;5.12

Michalewicz 5 -4.687 0; π Langerman 5 -1.4 0;10 Schwefel n 0 -500;500
Michalewicz 10 -9,66 0; π Langerman 10 -1.4 0;10 Shekel 10 4 -10.536 -10 ; 10

3.1 Implementation

The application details are now described, clarifying the approach. The compo-
nent EA is a steady-state real-coded GA employing well-known genetic operators
as roulette wheel selection [14], blend crossover (BLX0.25) [15], and non-uniform
mutation [16]. Briefly explaining, in each generation, a fixed number of individ-
uals NS are selected, crossed over, mutated and updated in the same original
population, replacing the worst individual (steady-state updating). Parents and
offspring are always competing against each other and the entire population
tends to converge quickly.

The component IC performs an iterative clustering of each selected individual.
A maximum number of clusters, MC, must be defined a priori. The ith cluster
has its own center ci, but a common radius rt, in each generation t, is calculated
for all clusters by:

rt =
xsup − xinf

2 · n
√

|Ct|
(2)

where |Ct| is the current number of clusters (initially, |Ct| = MC), xsup and xinf

are, respectively, the known upper and lower bounds of the domain of variable
x, considering that all variables xi have the same domain.

Whenever a selected individual pk is far away from all centers (a distance
above rt), then a new cluster must be created. Evidently, MC is a bound value
that prevents a unlimited cluster creation, but this is not a problem because the
clusters can slip along the search space.

The cluster assimilation is a foreseen step that can be implemented by dif-
ferent techniques. The selected individual pk and the center ci, which it belongs
to, are participants of the assimilation process by some operation that uses new
information to cause some changing in the cluster location. In this work, the
cluster assimilation is given by:
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c′i = ci + α · (pk − ci) (3)

where α is called disorder degree associated with assimilation process. In this
application, the center are kept more conservative to new information (α = 0.05).

These choices are due to computational requests. Complex clustering algo-
rithms could make ECS a slow solver for high dimensional problems. Considering
the euclidean distance calculated for each cluster, for a n-dimensional problem,
the IC complexity is about O(MC · n).

At the end of each generation, the component AM performs the cooling of all
clusters, i.e., they have their accounting of density, δi, reset. Eventually some (or
all) clusters can be re-heated by selections or become inactive, being eliminated
thereafter by AM. A cluster is considered inactive when no selection has occurred
in the last generation. This mechanism is used to eliminate clusters that have
lost the importance along the generations, allowing that other search areas can
be framed. The AM is also evoked whenever a cluster is activated. It starts the
component LS, at once, if

δi ≥ PD · NS
|Ct|

(4)

The pressure of density, PD, allows to control the sensibility of the component
AM. The meaning of PD is the desirable cluster density beyond the normal
density, obtained if NS was equally divided to all clusters. In this application,
satisfactory behavior has been obtained setting NS = 200 and PD = 2.5.

The component LS was implemented by a Hooke and Jeeves direct search
(HJD) [17]. The HJD is an early 60’s method that presents some interesting fea-
tures: excellent convergence characteristics, low memory storage, and requiring
only basic mathematical calculations. The method works by two types of move.
At each iteration there is an exploratory move with one discrete step size per
coordinate direction. Supposing that the line gathering the first and last points
of the exploratory move represents an especially favorable direction, an extrap-
olation is made along it before the variables are varied again individually. Its
efficiency decisively depends on the choice of the initial step sizes SS. In this
application, SS was set to 5% of initial radius.

The Nelder and Mead Simplex (NMS) has been more widely used as a nu-
merical parameter optimization procedure. For few variables the simplex method
is known to be robust and reliable. But the main drawback is its cost. More-
over, there are n parameter vectors to be stored. According to the authors, the
number of function calls increases approximately as O(n2.11), but these numbers
were obtained only for few variables (n ≤ 10) [2]. On the other hand, the HJD is
less expensive. Hooke and Jeeves found empirically that the number of function
evaluations increase only linearly, i.e., O(n) [17].

3.2 Computational experiments

The ECS was coded in ANSI C and it was run on Intel AMD (1.33 GHz) platform.
The population size was varied in {10, 30, 100}, depending upon the problem size.
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The parameter NC was set to 20 for all test functions. In the first experiment,
ECS is compared against two other approaches well-known in the literature:
Genocop III [16] and the OptQuest Callable Library (OCL) [18]. Genocop III is
the third version of a genetic algorithm designed to search for optimal solutions
in optimization problems with real-coded variables and linear and nonlinear
constraints. The OCL is a commercial software designed for optimizing complex
systems based upon metaheuristic framework known as scatter search [10]. Both
approaches were run using the default values that the systems recommend and
the results showed in this work were taken from [18].

The results in Table 2 were obtained, in 20 trials, allowing ECS to perform
10, 000 function evaluations, at the same way that Genocop III and OCL are
tested. The average of the best solutions found (FS) and the average of function
calls (FC) were considered to compare the algorithm performances. The average
of execution time in seconds (ET) is only illustrative, since the used platforms
are not the same. The values in bold indicate which procedure yields the solution
with better objective function value for each problem. Note that ECS has found
better solutions in two test functions, while both OCL and Genocop III have
better results in one function.

Table 2. Comparison against OCL and GENOCOP-3

ECS OCL GENOCOP III
Function var FS ET FS ET FS ET

Ackley 50 0.000 0.181 0.000 16.800 0.000 13.400
Ackley 100 0.000 0.374 0.000 103.600 0.000 46.600
Sphere 100 0.000 0.128 2.419 60.300 1114.451 43.700

Griewank 20 0.000 0.123 0.000 3.800 1.076 2.600
Rastrigin 10 1.087 0.036 0.000 4.500 1.026 0.900
Rastrigin 20 10.129 0.063 0.000 6.300 10.508 2.500

Rosenbrock 6 0.002 0.065 5.950 6.300 273.309 0.800
Rosenbrock 8 0.000 0.077 0.484 3.200 5.601 0.800
Rosenbrock 20 0.003 0.022 5.600 6.900 7.685 2.800

Schwefel 10 118.160 0.042 844.069 1.800 1.387 0.800
Schwefel 20 1360.397 0.047 1506.067 2.400 134.491 2.100

In the second experiment, ECS is compared against other approach found in
literature that works with the same idea of detecting promising search areas:
the Continuous Hybrid Algorithm (CHA), briefly described in the introduction.
The CHA results were taken from [5], where the authors worked with several n
dimensional test functions. The most challenging of them are used for comparison
in this work. The results in Table 3 were obtained allowing ECS to perform up to
100, 000 function evaluations in each one of the 20 trials. There is no information
about the corresponding CHA bound. The average of the gaps between the
solution found and the best known one (GAP) and the average of function calls
(FC) were considered to compare the algorithm performances, besides the success
rate (SR) obtained. In the ECS experiments, the SR reflects the percentage
of trials that have reached at least a gap of 0.001. The SR obtained in CHA
experiments is not a classical one, according the authors, because it considers
the actual landscape of the function at hand [5].
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One can observe that ECS seems to better than CHA in all test functions
showed in Table 3, except for the Zakharov, which ECS has not found the best
known solution. It is known that the 2-dimensional Zakharov ’s function is a
monomodal one with the minimum lying at a corner of a wide plain. Nevertheless,
there was not found any reason for such poor performance. In function Shekel,
although ECS have found better gaps, the success rate is not as good as CHA.
The values in bold indicate in which aspects ECS was worse than CHA.

Table 3. Comparison against CHA

ECS CHA
Function var ET GAP FC SR GAP FC SR

Eason 2 0.002 0.00060 593.5 100 0.001 952.0 100
Goldstein 2 0.001 0.00060 345.4 100 0.001 259.0 100
Hartman 6 0.003 0.00000 633.9 100 0.008 930.0 100

Rosenbrock 5 0.007 0.00040 2561.7 100 0.018 3290.0 100
Rosenbrock 10 0.023 0.00005 8979.5 100 0.008 14563.0 83
Rosenbrock 50 0.049 0.00015 32780.6 100 0.005 55356.0 79
Rosenbrock 100 0.286 0.00444 85821.0 80 0.008 124302.0 72

Shekel 4 0.003 0.00007 506.8 75 0.015 635.0 85
Zakharov 10 0.004 0.00050 2328.6 100 1e-6 4291.0 100
Zakharov 50 0.153 33.75020 100040.6 0 1e-5 75520.0 100

Other results obtained by ECS are showed in Table 4. The gap of 0.001 was
reached a certain number of times for all these functions. The worst performance
was in Michalewicz and Langerman’s functions (SR about 65%).

Table 4. ECS results for other test functions

Function var ET GAP FC SR Function var ET GAP FC SR
Griewank 50 0.053 0.00010 5024.550 100.00 Rastrigin 10 0.100 0.00060 26379.950 100.00
Griewank 100 0.432 0.00000 24344.450 100.00 Rastrigin 20 0.339 0.00078 71952.667 90.00

Langerman 5 0.023 0.00000 5047.684 95.00 Schwefel 20 0.211 0.00035 39987.950 100.00
Langerman 10 0.075 0.00000 17686.692 65.00 Schwefel 30 0.591 0.00029 90853.429 70.00

Michalewicz 5 0.054 0.00035 12869.550 100.00 Michalewicz 10 0.222 0.00038 37671.923 65.00

4 Conclusion

This paper proposes a new way of detecting promising search areas based upon
clustering. The approach is called Evolutionary Clustering Search (ECS). The
ECS attempts to locate promising search areas by framing them by clusters.
Whenever a cluster reaches a certain density, its center is used as start point of
some aggressive search strategy.

An ECS application to unconstrained numerical optimization is presented em-
ploying a steady-state genetic algorithm, an iterative clustering algorithm and
a local search based upon Hooke and Jeeves direct search. Some experiments
are presented, showing the competitiveness of the method. The ECS was com-
pared with other approaches, taken from the literature, including the well-known
Genocop III and the OptQuest Callable Library.
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For further work, it is intended to perform more tests on other bench-mark
functions. Moreover, heuristics and distance metrics for discrete search spaces
are being studied aiming to build applications in combinatorial optimization.
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