Optical band gap of the α -mercuric iodide

A. Ferreira da Silva,^{a)} N. Veissid, and C. Y. An Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, P. O. Box 515, CEP 12201-970, São José dos Campos-SP, Brazil

J. Caetano de Souza Instituto de Física, Universidade Federal da Bahia, CEP 40210-340, Salvador-Ba, Brazil, and Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, CEP 44031-460, Feira de Santana-Ba, Brazil

A. V. Batista da Silva and P. César Farias Instituto de Física and Escola Politécnica, Universidade Federal da Bahia, CEP 40210-340, Salvador-Ba, Brazil

M. T. F. da Cruz

Instituto de Física, Universidade de São Paulo, CEP 01498-970, São Paulo-SP, Brazil

(Received 8 May 1995; accepted for publication 29 June 1995)

We investigate by photoacoustic spectroscopy the optical band-gap energy of mercuric iodide, α -HgI₂, grown by sublimation in a sealed ampoule. Due to its importance as a detector material operating at ambient temperature, the physical properties of α -HgI₂ have been recently studied. We found, by two different methods, the band-gap energies E_G =2.32 and 2.39 eV, respectively. These results are in good agreement with recent measurements based on reflection and absorption spectra. © 1995 American Institute of Physics.

Since 1982, when the researches on mercuric iodide celebrated the tenth anniversary of the first article related to its use as a room-temperature detector,^{1,2} much attention has been paid to investigation of this semiconductor toward optical properties and development of crystal growth and device fabrication techniques. The mercuric iodide crystal is a wide-band-gap semiconductor.^{3,4} The band-gap energy has been measured by different methods, varying from $E_G=2.11$ to 2.397 eV.^{4–7} Recently Burger and Nason⁴ measured E_G by a method based on reflection and absorption spectra. They found $E_G=2.292$ eV at room temperature. This result differs from other experiments.^{4–7} In the absence of a complete study in a α -HgI₂, further analysis of this system is of much interest.

As the value of E_G is an important parameter in electronic and optoelectronic design, we investigate the optical absorption at the fundamental band edge by the photo-acoustic spectroscopy (PAS) technique. PAS has been proved to be a simple and reliable nonodestructive method for measuring the optical properties of solids or powder samples.⁸⁻¹¹ It has the advantage of obtaining directly the spectra of the heat generated in a sample, due to nonradiative deexcitation process, following the absorption of light, on any type of materials.⁸⁻¹⁴

In order to obtain a high-purity mercuric iodide, we have used the following procedure: iodine and mercury elements from Merck (5N) were placed in a Pyrex ampoule (18 cm length and 15 mm diameter) with a ratio obeying the stoichiometry of α -HgI₂, resulting in a total mass of 15 g. The ampoule was closed under vacuum. This sealed ampoule was submitted to a temperature of 200 °C during 24 h to obtain a homogeneous material. After this, the sealed ampoule with the material filling it superior part was positioned in a vertical furnace under a thermal gradient from 150 to 100 °C, during 7 days. The recrystalized compound filled the inferior part of sealed ampoule through a sublimation process. With this method, we obtained polycrystalline α -HgI₂ of very good optical quality. The sample used in this work is a platelet of this grown material with 1 mm thickness.

The PAS system consists of a tungsten lamp source of 200 W, a monochromator, a chopper with a modulation frequency of 17 Hz, photoacoustic cells, a lock-in amplifier, and a computer. The wavelength range is 300–850 nm. The resultant PA spectra are monitored by the computer, which simultaneously displays the wavelength-dependent signal intensity.

The optical band-gap energy has been estimated from the absorption data obtained as a function of the wavelength.

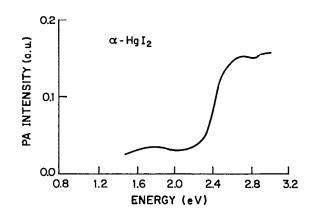


FIG. 1. Room-temperature PA spectra of α -HgI₂ as a function of photon energy.

5822 J. Appl. Phys. 78 (9), 1 November 1995

0021-8979/95/78(9)/5822/2/\$6.00

© 1995 American Institute of Physics

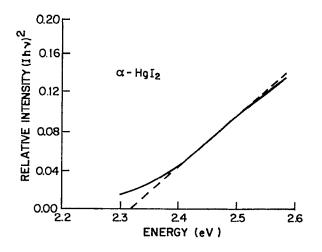


FIG. 2. Relative intensity $(Ih\nu)^2$ vs photon energy near the fundamental absorption edge at room temperature. The dashed line crosses the energy axis at 2.32 eV.

We use the relation

$$Ih\nu = A(h\nu - E_G)^{1/2},$$
 (1)

which is valid for allowed direct transition.¹⁵ In Eq. (1), *I* is the absorption intensity and *A* a coefficient. From the data obtained, a straight-line fitting of $(Ih\nu)^2$ versus the photon energy $h\nu$ and the change in the relative intensity of the absorption confirm that when the linear portion of the plot crosses the $h\nu$ axis, we find the energy gap $E_G=2.32$ eV. We also calculate E_G by the changing of the derivative in the fundamental absorption edge and found $E_G=2.39$ cV. Both

values are closer to Burger and Nason's⁴ results, i.e., $E_G = 2.292$ eV, than others recorded in the literature.⁴⁻⁷

In Fig. 1 we show the PA spectra for α -HgI₂, at room temperature, as a function of photon energy. Figure 2 shows the relation $(Ihv)^2$, here denominated as PA intensity, as a function of the photon energy.

In summary we have shown that the PAS technique provides a reliable method to determine room-temperature value of the fundamental band-gap energy E_G of α -HgI₂. The value of E_G is similar to the one obtained recently by a method based on reflection and absorption spectra.⁴

¹M. Schieber, Nuc. Instrum. Methods 213, 1 (1983).

- ²A. Burger, S. H. Morgan, E. Silberman, D. Nason, and A. Y. Cheng, Nuc. Instrum. Methods Phy. Res. A **322**, 427 (1992).
- ³D. E Turner and B. N. Harmon, Phys. Rev. B 40, 10 516 (1989).
- ⁴A. Burger and D. Nason, J. Appl. Phys. 71, 2717 (1992), and references therein.
- ⁵R. H. Bube, Phys. Rev. 106, 703 (1957).
- ⁶A. Anedda, F. Raga, E. Grilli, and M. Guzzi, II Nuovo Cimento, B 38, 439 (1977).
- ⁷E. Lopez-Cruz, J. Appl. Phys. 65, 874 (1989).
- ⁸L. Eaves, H. Vargas, and P. J. Williams, Appl. Phys. Lett. 38, 768 (1981).
- ⁹O. Zelaya-Angel, J. J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, and A. Ferreira da Silva, Appl. Phys. Lett. 64, 291 (1994).
- ¹⁰ J. Caetano de Souza, A. Ferreira da Silva, and H. Vargas, J. Phys. (Paris) IV Colloq. 4, C7-129 (1994).
- ¹¹ A. Pinto Neto, H. Vargas, N. F. Leite, and L. C. Miranda, Phys. Rev. B 41, 9971 (1990).
- ¹²A. Rosencwaig and A. Gersho, J. Appl. Phys. 47, 64 (1975).
- ¹³A. Mandelis, Photoacoustic and Thermal Wave Phenomena in Semiconductors (North-Holland, New York, 1987).

¹⁴S. A. Tomás, O. Vigil, J. J. Alvarado-Gil, R. Lozada-Morales, O. Zelaya-Angel, H. Vargas, and A. Ferreira da Silva, J. Appl. Phys. 78, 2204 (1995).

¹⁵ J. I. Pankove, Optical Processes in Semiconductor (Dover, New York, 1975).