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Abstract. - A new formalism is developed, based on the

memory function approach, to treat many particle systems. The

formalism is applied to the Ramirez-Falicov-Kimball (RFK) Hamiltonian, suitable to describe photoemission spectra in

many light rare earth intermetallics. We obtain a quasi particle 4f-

energy in the weak correlation regime and we discuss the

bimodal structure of the f-f propagator in this regime comparing with the Hubbard-type structure in the strong correlation

regime.

It is well known that many experiments concern-
ing the photo-emission of 4f-electrons in light rare-
earth elements, e.g., Ce, show a double peak structure:
one localized at the Fermi level and another approxi-
mately 2.5 eV below it.

Parks et al. [1] and Wieliczka et al. [2] have shown
that this bimodal structure of the 4f-spectra occurs
in many other metallic systems containing light rare
earths such as Pr and Nd.

Many works (3, 4, 5] have been proposed in order
to explain the 4f-double structure, based, for example,
on the rare earth magnetic properties [3] or on screen-
ing effects [4, 5]. Nunez-Regueiro and Avignon [6] have
calculated the 4f-spectral density, based on the Falicov-
Kimball model, adopting Hubbard's “resonance broad-
ening approximation” . This strong correlation regime
approximation, yields one or two peaks depending on
the ratio between the Coulomb correlation U between
the f-localized states and the d-itinerant states and the
d-bandwidth A. Moreover, f-d hybridization plays no
significant role in the broadening of the two peaks.

In this work, adopting the Ramirez-Falicov-Kimball
(RFK) Hamiltonian, we calculate the f-f Green’s func-
tion in the weak correlation regime, i.e., U/W < 1.
We develop here a Memory Function matrix formal-
ism, which enables us to describe the weak correlation
regime beyond the usual Hartree-Fock approximation.

For the sake of simplicity, we discuss here only the
RFK Hamiltonian in the one-impurity case:

H= Zeo foh foo +Zsk di*(-a dy,+

ko
+D V(FL die, +df, for) + Y Undy nby

ko oo’
nga' = CX(-)‘:, Qoo
Y nge=n§, (a=ford). (1)
o

The local f-f Green function is given by *
Goow (t) = 18 (¢) {[foo, fi (2)] nE @)

Now we introduce the self-consistent many body the-
ory developed by Fedro and Wilson [7], Kishore [8] and
Chao et al. [9]. Let us consider two sets of Heisen-

berg fermion operators A, and Bp forming a complate
space:

{Aa} = {fOo‘; dka} (3)4
{Bs} = {1d,, df,}
and a projection operator P defined as
<[Ajy \I’]+>
Py = P U= Bj——= (4)
zj: ’ zJ: (45, Bil,)

Using the sets given by equation (3), we have:
P = 15 (for, W)+ S, ([0 8],).
k

An equation of motion for the matrix G {(w) :

Gap (t) = 10 (t) ([Aa, Bs(2)],) (6)
can be worked out:
Gw)=[el-0-5w)] ™ % (7)
where
_ {[A« LBg],)
aff = <[Aa, Ba]+> (8)
Xos = ([Aa, Bgl,)bap )
and
Yap (W) = <[Aa, Le—a—57 (11_ PI (1-P) LB3]+>,
(10)

L being the Liouvillean operators: L = [H, ¥].
If we identify our first matrix element with the f-

state, we have:
P -1
Gloo (w) = [wl - - Fw)] xia (1)

Equation (11) can be solved in several levels of ap-
proximations for the matrix 4 (w). In the lowest level
of approximation we use the linearized f-d Coulomb
term in the Hamiltonian. Then we find: % (w) = 0.
The f-f propagator becomes:

1
w—e{,—U(nf})—VzF('w)

Ghoo (w) =

(12)

where

1
Fuy=» — 13)
(w) Xk:w—sk—U<ng> (

and we recover the Hartree-Fock approximation.
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In the next step, we use a recursion formula for the 5 U? <n8> (1 _ (nS))
self-energy v (w) [9, 10]. (L w)= ~ - (14

The hierarchy of the Green’s function is trun- w+teo+U <n0>
cated by approximating conveniently the self-energy G§0, exhibits a bimodal structure in the weak correla-
~f (n+1 : w). Thus, in the first order approxima- tion regime. This bimodal structure however is quite
tion, we linearize the Hamiltonian for 47 (2 : w), different from the Hubbard-type two-peak structure [f]
which will give us again 'yﬂ (2 : w) = 0. Then we ob- which is peculiar to a strong correlation regime. The
tain from the recursion formula: two resonant f-energies are:

B = LB 3 1 ey o0 (ng) + V2P ()] +40 (ng) (1 - (nd)). (15)

The {-f propagator, exhibiting a n-modal structureis  feature, we perform the calculation up to a higher level
obtained by linearizing again the Coulomb interaction  of approximation, truncating the expansion terms in
contribution for higher v¥ (n+1 : w) terms in the ~%(3 : w), giving rise to terms in U®. Then, we have:
recursion formula. As an illustration of this peculiar

(w([for, L(1 = PYLf&,] , ) + {[for, L* (1 = P) Lfos] . }))
w? +w ([for, L1, ) + ([fors L2 14 )

7T (w) = (16)

and after some algebra we obtain:

wU? (n§) (1 = (n5)) + U (ng) (1 — (nd)) (2e0 + U) + VZU ((n5) — (n))
w2 +w (eo +U <ng>) + (sg + 260U <n8> + U2 <ng> + V2)

" (w) =

(17)

v

Introducing the above result in equation (11) the f-

f Green functionwhich exhibits a tri-modal structure In the lowest approximation and assuming V =0
for the 4f-spectral density of states, associated to the (i.e., a Falicov-Kimball model), one gets the usual
higher order of the approximaton on the self-energy Hubbard-type bimodal structure

¥ (w).

If one goes further in our perturbative treatment one
can obtain, in principle, a n-modal structure for the f-f w—€o w—¢go—~U
propagator. However, for the physical situation which  which is completely different from the bimodal struc-
we are interested in, one needs only to go up to second ture derived in this work, in the weak correlation
order in U, where the main features of the 4f-states regime.
structures are already present (cf. Eq. (19)).

Finally, it should be mentioned, that this approach (1] Parks, R. D., Raaen, S., den Boer, M. L., Chang,
can also be applied in the case of strong correlation Y. S. and Williams, G. P., Phys. Rev. Lett. 52,
limit, i.e., U/ A > 1. In this case, the choice of the (1984) 2176.
starting set of operators is a different one, namely: [2] Wieliczka, D. M., Olson, C. G. and Lynch, D. M.,

+ d Phys. Rev. Lett. 52 (1984) 2180.
(Ai > = {f 00 157, dka} (3] Gunnarson, O. and S(chénglamer, K., Phys. Rev.

]

O Y ) O ) (22)

(A7) = {for 5™, dy, } (18) Lett. 50 (1983) 604.
4] Liu, S. H. and Ho, K. M., Phys. .
(Bi) = {foa, dka} [4] 4;1;0 and Ho ys. Rev. B 28 (1983)
where: . | [5] Riseborough, P. S., Physica 130B (1985) 66.
ngT =ng , (6] Nunez-Requeiro, M. D. and Avignon, M., Phys.
- . (19) Rev. Lett. 55 (1985) 615.
Ng = 1- ng .

* [7] Fedro, A. J. and Wilson, R. S., Phys. Rev. B 11
(1975) 2148.
& s . [8] Kishore, R., Phys. Rev. B 19 (1979) 3822.
00s (w) = Goo (w) + Gooo (w) (20) " [9] Chao, K. A., Kishore, R. and da Cunha Lima, I.
where C., J. Phys. C 11 (1978) L953.
s [10] Troper, A. and da Cunha Lima, I. C., Solid State
Gooe (w) = i0 (t) ([ for n5™, fob])- (21) Commun. 61 (1987) 195.

With this choice, the f-f propagator can be written as:
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