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We study tracer diffusion in lattices consisting of identical replicas of smaller systems. We develop
an exact enumeration method for computing the diffusion coefficient, which involves mapping the
system into a single-particle random walk in a different geometry in configuration space. In one
dimension the simulations show a crossover to normal diffusion, in agreement with mode-coupling
results. In two dimensions the diffusion coefficient is enhanced by finite-size effects: we show this
for a 3 x 3 periodic system. We find exact solutions for the single-vacancy case; our simulations
agree with theory essentially to machine precision. We also develop an approximate theory for the
periodic system for arbitrary concentrations of background particles, in close agreement with the

numerical results.

I. INTRODUCTION

The simple hopping motion of classical particles has
been used to describe a wide variety of physical phenom-
ena: ionic motion in superionic conductors,! atomic dif-
fusion in hot solids via the vacancy mechanism,? and dif-
fusion of hydrogen in various metal hydrides.? The usual
simplifications in formulating hopping models consist of
placing the particles at the nodes of a regular lattice, and
imposing hard-core interactions in the form of an exclu-
sion principle, forbidding a particle from hopping to an
already occupied site. In this context, considering the
properties of a single tagged random walker is known as
the tracer problem.

The tracer problem is far from trivial: it was realized
quite early? that steps far away in time can be corre-
lated. Exact solutions are only known in the limits of
vanishingly small concentrations of background particles
or vacancies.® The self-avoidance gives rise to two effects
on the motion of the tagged particle which substantially
differentiate it from a free-particle random walk. First,
a blocking effect which decreases the number of success-
ful hops of the tagged particle, leading to a decrease in
the value of the mean-squared displacement (MSD), and
hence of the diffusion coefficient. Second, the walk per-
formed by the tracer particle is correlated: the proba-
bility that there are two successive jumps in opposite
directions is significantly higher than that of two succes-
sive jumps in the same direction, as the tracer leaves a
vacancy behind. This effect is accentuated at higher con-
centrations of background particles. In addition to the
two exactly solved limits, there are a variety of formal
schemes yielding approximate solutions for intermediate
concentrations.®™8

A number of Monte Carlo (MC) studies of tracer dif-
fusion have also been performed.®° The numerical mea-
surements agree with the exact and approximate theo-
ries typically within 1-2%. In this paper we consider
tracer diffusion in the case of a small repeated system of
background particles (or periodic boundary conditions,
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but taking into account the tracer’s crossing of system
boundaries) for the following reasons. Firstly, we have
developed an exact enumeration method to simulate this
specific problem which is free of statistical error, unlike
standard MC simulations. Secondly, this method allows
us to see clearly and dramatically the effect of finite size
in simulations, as we concentrate on extremely small sys-
tems (3 x 3). Finally, as we are able to develop exact so-
lutions for the single-vacancy case and approximate solu-
tions for arbitrary concentrations, we are able to report
remarkable agreement between theory and simulations in
those cases, and to observe how the finite-size effects vary
in the single-vacancy case in particular.

The paper proceeds as follows. In Sec. II we develop
the exact enumeration technique. Section III contains
analytical results for the single-vacancy case and approx-
imate results for general densities, as well as numerical
results which are compared with theory. Finally, we dis-
cuss the results in Sec. IV.

II. EXACT ENUMERATION METHOD

The exact enumeration technique has been applied in
a variety of random walk and cellular automata problems
since its introduction in 1984 by Havlin and co-workers.'°
It consists in evolving not individual particles or walkers
but rather probabilities or distributions, according to the
same or equivalent dynamical rules. Its advantage is that,
for any configuration of fixed disorder (if applicable), the
results are exact. The only averaging required is over
different such configurations.!! The original applications
concerned survival times in environments with randomly
placed traps; subsequent applications have measured first
passage times, velocity correlation functions, and other
quantities of interest. Most applications have required
only minor modifications of the original technique. These
have included lattice gas cellular automata,'? in which
particles interact, but can coexist at a lattice node, and
Lorentz models!® in which particles interact with hard-
core fixed obstacles. The application of the technique to
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the tracer problem is less straightforward.

We consider a finite system with Ng sites, Np back-
ground particles, and a tagged particle. The motion of
the tagged particle in the finite system can be thought of
as motion in an infinite system if the latter is formed by
repeating in space the original finite system. This artifice
is usual in standard Monte Carlo simulations. We now
consider the configuration space of such an infinite sys-
tem. Let us define neighboring states as those in which
the position of one particle differs exactly by one. A lat-
tice with a complex topology is formed by linking neigh-
boring states. If the position of the tagged particle is used
as the reference for the position of the other particles, it
is possible to arrange the lattice in configuration space
in a regular way, which resembles the real-space lattice.
The resulting lattice is formed by exact replicas of a ba-
sic unit, which is derived from the possible configurations
that the system can assume with the tagged particle fixed
at a given position in the real lattice. Figure 1 illustrates
this phase-space arrangement for a one-dimensional sys-
tem with Ng¢ = 5 and Np = 2. The evolution of the
system in real space can be mapped into a single “parti-
cle” random walk in the configuration space. Due to the
topological equivalence between the sets of states avail-
able to the system for different positions of the tracer in
the real-space lattice, a general random walk in phase
space is equivalent to a closed walk involving only the

1 ® O O - .
2 ® O - O -
3 ® O - - O
4 ® - O O -
5 ® - O -« O
6 ® - - O O

FIG. 1. Example of the mapping from real space to con-
figuration space. There are six possible configurations of the
tracer at the origin plus two background particles in a total
of five sites. The geometry for the corresponding walk in con-
figuration space is given in the lower part of the figure. The
system moves from one set of six states to its neighboring set
on the left or right whenever the tracer particle moves left or
right.
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states corresponding to one of the building blocks just
described. Figure 2 illustrates the situation for the ex-
ample in Fig. 1.

The closed random walk can be described in terms of
a finite transition matrix T. In order to keep track of the
position of the tracer while the point system performs
a given path in the closed random walk, we associate a
factor €% (e~%) to each transition which involves a pos-
itive (negative) displacement of the tracer in a direction
j in real space. For a one-dimensional system, the prob-
ability of a displacement [ of the tracer during which the
system goes from state m to state n in N steps is given
by

1 ™
PN =

(TV),, e "de. (1)
This method of recording displacement is based on the
fact that a path is constituted by a succession of transi-
tions and that the probability associated with it is given
by the product of the probabilities associated with each
individual transition. It can be seen as a direct extension
of the formalism given, for example, by Ziman!¢ for the
treatment of an unrestricted one-particle random walk.
Equation (1) can be easily generalized to higher dimen-
sions.

In order to further illustrate the method we develop
in full the one-dimensional example introduced above,
by constructing explicitly its closed-walk transition ma-
trix T. In the following we denote the lattice coordina-
tion number by Z and the total number of particles by
Nr = Np +1. A point to be noted is that, in a standard
MC run, the total number of transitions that a system
can undergo in any of its possible states is N7 Z. A frac-
tion of these are transitions to the same configuration—
they correspond to those instances in a MC simulation
in which the configuration is left unchanged in a system
step. From Figs. 1 and 2 it can be seen that the diag-
onal elements corresponding to states 1, 3, and 6 have
value 4/6, while for states 2, 4, and 6, they are 2/6. The
transitions 1 — 4, 4 — 6, and 2 — 5 are caused by a

FIG. 2. Single-system (closed) random walk for the ex-
ample of Fig. 1.
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tracer jump to the left, and have a factor e~* associated
with them. The respective reverse transitions, caused by
a tracer jump to the right, have a factor e?? in the transi-
tion matrix. Transitions involving jumps of background
particles have value 1/ZNp. The full transition matrix
for the system illustrated in Figs. 1 and 2 is given by

4 1 0 e% 0 0

1 2 1 1 e% 90

T — 1o 1 4 o0 1 0
“6le? 1 0 2 1 e

0 €% 1 1 2 1

0 0 0 e 1 4

In what follows we develop in general terms the formu-
las which lead to the tracer mean-squared displacement
(MSD) in the case of a one-dimensional system.

The probability P;(N) that the tracer is at position
| after N time steps, averaged over all possible initial
conditions, is given by

A(V) = o / " S(TY), e s, @)
L2

where M = (Nﬁ;l) is the number of possible states of

the system. P, in turn is related to T by the inversion
formula

>SRN = 7 (1Y), ©
l [%]

The expectation value of the MSD after N time steps
can be obtained by differentiating twice the above ex-
pression:

El: PP(N) = -Alz [—5—; (ZJ: TN>ij]

We now show a simple way to evaluate the second
derivative in the previous expression. We expand the
transition matrix T in powers of 6:

(4)

6=0

2
T(0) = A + 6B — %C+(’)(93). (5)
Squaring the above expression to the same order one gets
02 92
T2() = <A +i6B — 5—0) (A +i6B — —2—0)
2
=A% 4 i6(AB + BA) — %(AC + CA + 2B?)
92
=Aj, +16By — ?CZy (6)

and in general

T"(6) = An—1A +i6(B,_1A + A,_,B)

92
_?(An—lc +Cpn_1A +2B,,_;B)

92
=A, +i6B, — -Q—C,,, (7
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where
A, =A,_1A, (8)
B, =B, 1A+ A, 1B, (©)
and
C,=A,,C+C,_1A+2B,_;B. (10)
From (6) we have
02 N
~ 520 E(T )iz (6) = Z(CN)ij, (11)
ij =0 ij
and from (3) we have
1
(R*)N = i > (Cn)is- (12)
ij

We use the above equation to compute the MSD;
Egs. (8)—(10) give a recursion relation to obtain Cy.
The connection with standard MC simulations is that
each power of the transition matrix corresponds to a
jump trial by one particle, and a full MC step per particle
corresponds to Nr iterations of the matrix.
Finally, the diffusion constant D is defined by

(R?)y =D (z\%) ; (13)

the correlation factor f is related to D through D = f fg.
The blocking factor fp is the fraction of successful hops
of the tagged particle out of a given number of attempted
hops. By considering the probabilities of the possible en-
vironments that the tagged particle can experience, and
the probabilities of a successful hop in each environment,

we find
fB = (1" Nivi1)’

where Np is the number of background particles and Ng
is the number of sites in the system. This expression
holds in higher dimensions. The blocking factor corre-
sponding to an infinite system with a concentration ¢ of
background particles c is given by (1 — ¢). By comparing
these two expressions we can relate the number of parti-
cles in the finite system and the concentration of back-
ground particles in the corresponding infinite system.
The procedure in two dimensions is similar, but the
matrix has to take into account all transitions between
configurations in which the tracer is at the (0, 0) position.
The equation analogous to (6) is derived in the Appendix.
Finally, we remark that the time and space Fourier
transforms of the tracer’s self-correlation function can be
calculated under the formalism of this section. These
quantities are relevant to the interpretation of data re-
lated to spectroscopic techniques, such as Modssbauer
spectroscopy and NMR signals of moving atoms.!?

(14)

III. RESULTS

The method has proved to be quite fast,'® but also very
memory consuming. The order of the matrix, as seen
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before, is (le,;l), which grows essentially exponentially

with Ng for particle concentrations of ~ 1/2. Therefore,
the method is most appropriate for very small lattices,
or in the limits of low density of background particles or
vacancies.

After showing an example in one dimension, we con-
centrate on 3 x 3 lattices as well as the single-vacancy
limit for larger two-dimensional lattices. Note that for
the single-vacancy case, the order of the matrix C grows
only linearly with system size; this allows us to consider
systems up to 8 x8. On the other hand, for a 4 x4 system
with 7 or 8 particles the order of the matrix is 6435, be-
yond our present memory possibilities. The typical times
needed to observe asymptotic behavior are about 500 full
MC steps, or about 3000 jump trials for a 6-particle sys-
tem.

Figure 3 shows the full evolution of the MSD vs time,
as calculated by the matrix multiplication method pre-
sented in the previous section. The system is a one-
dimensional periodic array of 10 sites, with a tracer plus
four background particles. It is clear that the time evo-
lution of the MSD is extremely smooth when compared
with standard MC simulations (see Refs. 8, 9 and 17).
This is because our method averages over all possible
evolutions of the system, rather than a few.

Secondly, notice that the final behavior is (R%) ~
t, corresponding to normal diffusion. This is in con-
trast with the expected ¢!/2 abnormal asymptote in one
dimension.'81% Note also a crossover from a t!/2-like be-
havior to the final linear behavior. This fact can be un-
derstood in terms of finite-size effects as follows. In the
single-vacancy limit, the expression for the average co-
sine of the angle between successive jumps of the tagged
particle can be generally expressed as (see Appendix)

Li—1Ly—-1

-1 Z Z 1— e—i47rk1/L1
cosf = ————
k b
2dL1Ly =) =1 - 3 (cos 2781 4 cos 27k2)

(15)

<R

0.1 == i
1 10 100 1000

+

FIG. 3. Mean-squared displacement vs time (logarithmic
plot) for one-dimensional tracer diffusion; 10 sites, 4 back-
ground particles. The final behavior is (R?) ~ ¢, crossing
over from an apparent (R?) ~ t'/2 at times of order 50.
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where d = 1,2 is the space dimension and L; and Lo
denote the lattice dimensions. In the one-dimensional
case L1 = Ng, Lo = 1, and all references to the sum over
ko should be dropped. In this circumstance |cosé| < 1
for finite N, and the diffusion coefficient is given by

1+ cos@

D= .
fBl —cosf

(16)
Hence in the single-vacancy limit, normal diffusion will
be observed as a consequence of the periodic bound-
ary conditions. In the limit N, — oo, (15) shows that
cos § — —1 and the normal diffusive behavior disappears.
The presence of other vacancies in the lattice changes the
general form of the correlation between displacements,
leading to a less correlated random walk for the tracer.
In this situation, normal diffusion can also be expected
for long enough times. For short times, on the other
hand, the periodic boundary conditions have practically
no influence on the tracer’s motion, and we expect the
MSD to have the same time dependence as in the infi-
nite system. The crossover observed in Fig. 3 is therefore
purely a finite-size effect. A fair estimate of the crossover
time is given by the characteristic time needed for a va-
cancy to return to its original position by crossing one of
the two boundaries of the finite lattice.

Figure 4 shows the correlation factor for tracer diffu-
sion in a 3 x 3 periodic lattice (crosses), compared with
large-lattice results (squares) obtained by Tahir-Kheli
and El-Meshad.® We have computed the MSD for the
equivalent of about 600 MC steps per particle, and our
results for (R?)/N have converged to at least 8 signifi-
cant figures. The observed enhancement of the diffusion
coefficient, of up to 25% for high concentrations, is again
a finite-size effect. Equation (15) now with Ly x Ly = N
and d = 2 shows that cosf tends to the limit —1 + 2/7
(see Ref. 17) as N, — oo. Hence Eq. (16) is always valid
and the diffusive behavior observed in two dimensions is
not an accident due to the periodic boundary conditions,
but rather an intrinsic characteristic of the system. The
presence of the periodic boundary conditions, however,

C

FIG. 4. Structure factor f vs particle concentration c.
Open squares: Tahir-Kheli-El-Meshad simulations (Ref. 8);
crosses: exact enumeration results in a 3 x 3 lattice, illustrat-
ing the effects of finite size in simulation.
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enhances the value of the diffusion coefficient: The value
of cos 8 given by (15) for finite N, is always larger than
the value for the infinite lattice. Hence, the diffusion
coefficient will decrease in magnitude for increasing Ng,
tending asymptotically to

1
T—1

D=fp

(17

for Ng — oo.

Numerical results from the method of Sec. II are com-
pared against the exact result above in Table I. The re-
sults for the correlation factor agree essentially to numer-
ical precision up to the system sizes (8 x 8) tested. For
completeness, we also have included an approximate ex-
pression for the single-vacancy case and finite systems,
recently obtained by Brummelhuis and Hilhorst.2? This
is to our knowledge the only other result for tracer dif-
fusion which applies specifically to finite lattices. Since
their result is obtained only to order 1/L?, it is no sur-
prise that our simulations agree to a greater extent with
(15) in this paper.

As a final point we compare our 3 x 3 periodic lattice
results with an adaptation of the TKE method for finite
lattices. Starting from a mean-field decoupling approxi-
mation for many-particle rate equations, Tahir-Kheli and
Elliott (TKE?) obtained an approximate expression for
the tracer diffusion coefficient for arbitrary concentra-
tions of background particles in the infinite lattice. They
obtained

-1
D=fp(1- osly) (18)

This expression is exact in the limits of a vanishingly
small concentrations of background particles or vacan-
cies.

In order to adapt the TKE result to finite periodic
lattices, one must replace cos 6 by the finite-lattice result,
as given in (15). In addition, the limiting cases of a single
vacancy or a single background particle now correspond
respectively to concentrations (Ng — 2)/(Ng — 1) # 1
and 1/(Ns —1) # 0. Taking these limits into account we
obtain

c(Ns —1)/(Ns — 2)
EalE=uEry

cos 6§

f=1+

(19)

TABLE 1.
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where r = [Ng—2— (Ng—1)c|/(Ns—3) and s = [(Ns —
1)e — 1]/(Ns — 3).

The correlation factor results for the 3 x 3 lattice shown
in Fig. 4 are presented in tabular form, and compared
with the adapted TKE theory in Table II. In this case, as
the number of microscopic time steps required for asymp-
totic behavior is reasonably small (1200-4800 steps), we
do not have to worry much about roundoff or convergence
problems. The numerical and analytical results agree to
within ~ 0.5%.

IV. SUMMARY AND DISCUSSION

In this paper we have developed several advances in
the understanding of the tracer problem, particularly to
the case of small periodic systems. In Sec. II we de-
veloped an exact enumeration method for calculating
numerically the diffusion coefficient of a tracer parti-
cle. This method has no statistical errors—the only er-
rors are due to roundoff, or to iterating for finite times.
The advantages of the method are seen in particular
in Table I, which shows the correlation factor for the
single-vacancy case, obtained both exactly and by simu-
lations (exact enumeration method). The relative error
is, to our knowledge, several orders of magnitude lower
than obtained in any previous simulation of this prob-
lem. Thanks to the new method we confirm crossover
behavior to (R?) ~ t in one dimension for periodic sys-
tems (Sec. III), which was predicted by mode-coupling
theory!” and by the analytical results of this paper. In
Sec. III we also show clearly the enhancement of the dif-
fusion coefficient caused by finite-size effects in two di-
mensions. We have also obtained exact results for the
single-vacancy case, which improved on a previous ap-
proximate result.?® Our expression is confirmed by our
new simulational method. Finally, we modify an approx-
imate theory” for arbitrary concentrations of background
particles, to take into account finite-system size. The re-
sults, presented in Table II, are in good agreement with
simulations. As in the infinite lattice, the modified TKE
theory tends to overestimate the value of the diffusion
coefficient at intermediate particle concentrations.

Single-vacancy results for an L x L lattice: size L, and correlation factor from 1/L?

expansion (Brummelhuis and Hilhorst, Ref. 20), numerical (exact enumeration) method, and exact
result [Egs. (15) and (16)]. Relative error refers to the exact enumeration method compared to the
exact result. The value in the last column is the best fit of a for (R?) = a + DN.

L f (BH) f (numerical) f (exact) Relative error a (constant)
3 0.6384 0.636 36367 0.636 363 64 54 x107° 0.037187
4 0.5634 0.548 38750 0.548 38710 7.3x 1077 0.032189
5 0.5287 0.51515151 0.51515151 -1.2x 1078 0.026 018
6 0.5098 0.49910767 0.499 107 67 1.2x107° 0.021 158
8 0.4910 0.484 407 58 0.484 407 48 2x 1077 0.014697
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TABLE II. Comparison of exact enumeration results and
adapted Tahir-Kheli-Elliott (TKE) theory for 3 x 3 lattice.
Np is the number of background particles in addition to the
tracer. Numbers in the fourth column are obtained by stan-
dard Monte Carlo simulation for the same systems (50000
independent particle histories).

Np f (enumeration) f (TKE) f (Monte Carlo)
1 0.9592 0.9592 0.9474

2 0.9146 0.9153 0.9182

3 0.8662 0.8681 0.8614

4 0.8140 0.8171 0.8151

5 0.7581 0.7619 0.7533

6 0.6988 0.7019 0.7022

7 0.6364 0.6364 0.6446
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APPENDIX

1. Angle expansion in two dimensions

The double Fourier transform and inversion formula
for the two-dimensional system analogous to (1) and (2)
are

1 s
P, (N) = m//Z(TN)ije 61l —i02l2 49, dg,
j

(A1)
and
. 1
)25 DLNRIOEIES 3¢ LNt
i 2 (4]
respectively. The MSD is then given by
(BYn =23 (1 +15)P,5(N)
11 la
62 8%\ 1 N
- [(‘ 926, a%)ﬁ Z(T ),-,»] (A3)
ij 6=0
The angle expansion analogous to (4) is now
92 92
T(01,02) = A + 6B, — ?101 +i62B, — 3201,.
(A4)

Note that mixed products do not contribute to (R?) .
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Because of symmetry

9% 1 N 9% 1 N
6291MZ( )z’j - 3292_M-Z( )ij
iJ k¥

= 6=0
(A5)
and we only have to consider powers of
92
A +i6,B, — Elcw. (A6)

This is the equivalent of (6) in two dimensions. The
rest of the derivation proceeds as shown in Sec. II.

2. Derivation of Eq. (15)

The tracer’s average MSD after a large number of time
steps IV can be expressed as

N’ N’
R*=3 % 7 (A7)
i=1 j=1
~fBN(1+2)_ cosf), (A8)
l

where fp is the blocking factor, N’ = fgN is the num-
ber of successful tracer steps, and cos#, is the average
cosine of the angle between displacements separated by !
successful steps. These steps refer to the infinite lattice.
Equation (A8) is valid and asymptotically correct in the
limit N — oo provided the sum ), cos 6, is convergent.
In the single-vacancy limit, displacements arbitrarily far
apart are correlated, and it can be shown that

cos 6 = (cos 6), (A9)
where cos@ designates the average cosine of the angle
between successive jumps. In order to evaluate cos 8 we
have to consider the random walk performed by the single
vacancy in the periodic lattice. Consider the situation in
which the tracer and vacancy have just exchanged posi-
tions, and let 7 and ¢ designate the positions of the tracer
and vacancy, respectively. Let m designate the other site
neighboring r. Then,

cos = P; — P, (A10)

where P,,;, P;; are the probabilities that the vacancy re-
turns to site r for the first time through site m or through
site i, respectively. These probabilities can be expressed
in terms of generating functions; they satisfy the differ-
ence equation

Uii(A) =615 + XY piaUsi (M), (A11)
s
with U defined by
Ui () = ) A"P,;(N), (A12)

n=0

where Pj;(N) is the probability that a random walker
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initially occupying site j is at site [ after IV steps. In the
expressions above, p;; is the probability of a transition

between sites [ and s. In terms of these functions (see
Sholl!%),

Ulr(l)Uri(l)

) (Il =i,m). (A13)

The above equations should in formal terms be viewed
as a limiting process, since the generating functions are
divergent for A = 1. Equation (A13) can be solved for
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Ui;(A) by Fourier series, yielding

L-1L-1 1 _ e—i4mki/L

-1
cosf = ——— )
2dL1 Ly kz=o kzo 1 — 3(cos 25 + cos 272)

(A14)

where L;, Ly are the size of the system and d is the di-
mension. For L; = 1, the one-dimensional case, (A14)
simplifies to a single summation.
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