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Mean-squared displacement of a hard-core tracer in a periodic system
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We show analytically and numerically that logarithmic contributions to the mean-squared dis-
placement of a hard-core tracer particle in a finite two-dimensional periodic lattice can be considered
as a transient, and only survive in the infinite system.

Memory effects in various fluid and fluidlike systems,
resulting in asymptotic algebraic decay (long-time tails)
of velocity correlation functions and in numerically mea-
surable corrections to transport coefficients, have been
the object of analytical and numerical study for more
than 20 years.!™® The purpose of this work is to show
that in the two-dimensional hard-core tracer problem”
the long-time tail and the associated logarithmic correc-
tion to the mean-squared displacement (MSD or {R?)),
only survive in a truly infinite system. In contrast, in
finite systems the asymptotic behavior of the MSD is
strictly linear.

Most of the analytical results of kinetic theory per-
tain to infinite systems. However, finite-system studies
are important for two reasons: real physical systems are
finite and the supporting numerical simulations are nec-
essarily performed in finite systems. The few available
results for finite lattices point to significant differences
between finite and infinite systems. In standard fluids
(continuum and lattice models), finite-system periodic
boundary conditions have been shown to produce strong
interference effects through sound modes.? In the one-
dimensional tracer problem,® the asymptotic behavior of
the MSD crosses over from ~ t!/2, the infinite-system re-
sult, to ~ t. In what follows we examine finite-size effects
in the two-dimensional tracer problem.

We begin by defining the model. A tagged random
walker (the tracer) moves in a medium of similar par-
ticles, with a hard-core exclusion principle. We concen-
trate for simplicity on the case of isotropic jumping prob-
ability, with equal rates J for the tracer and the other
walkers. It has been shown that, in the infinite-system
limit, the velocity correlation function has an asymptotic
t~2 behavior, leading to logarithmic corrections®® to the
linear dependence in time of the MSD of the tracer. This
was supported by Monte Carlo (MC) simulations® done
in fairly large systems (600 x 600). Great care was taken
to ensure that the simulation times were smaller than the
expected time needed for diffusion across the system. As
boundary effects were avoided, the result of these simula-
tions supports the existence of logarithmic corrections in
an “infinite” system. We note that the logarithmic cor-
rection is of the same form as that predicted for another
purely diffusive system, the Lorentz gas.?

0163-1829/93/48(6)/4136(4)/$06.00 48

The behavior of the model is governed by the master
equation

dl?;t(t) - 2,,: WasPo(t) — zb: Wha Pu(t), (1)

where P, (t) is the probability of the system being in con-
figuration a at time ¢, and Wy, is the probability per unit
time of a transition from configuration a to configuration
b. The continuous-time process described by (1) is equiv-
alent to a discrete-time process® which has a Poisson dis-
tribution in time with transition rate €y and is governed
by a transition matrix A. We rewrite (1) in matrix form

dP(t)
— X QP 2
"4 —op, (2)
where
Qab =W ab) (3)

Qaa = - Z Wba~ (4)
b

The probabilities that at time ¢ the system is in any
of the possible configurations are completely specified by
the elements of the propagator matrix G(t) = exp(€t).
In terms of the discrete process this matrix assumes the
form

- N (EOt)N —e€ot
G(t) = E A N1 € o, (5)
N=0

The relation between the matrices specifying the discrete
and continuous-time processes is

A =1+ e, (6)
€o

where I is the identity matrix. The only condition that
has to be imposed on the transition rate € is that it
should be greater than the largest diagonal element of Q.
It is convenient to fix €¢g to be the maximum transition
rate out of the possible configurations, i.e., ¢¢ = N7 ZJ,
where Np is the total number of particles and Z is the
coordination number of the lattice. It is readily checked
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that the transition matrix A describes the discrete pro-
cess simulated in the usual MC simulations of tracer dif-
fusion.

From the Laplace transform of (5), the following rela-
tion is obtained:

o N
(s+€)G(s) = Z AN (S+€0> . (7
N=0

From (7) we see that the Laplace transform of the prop-
agator matrix G is related to the generating function of
the discrete process,

A) = i ANAN, 8)
N=0

by the relations

(s +€0)G(s) =U(N), (9)

€0
=A. 10
P (10)

In what follows we will find it more convenient to study
the discrete-time process and find time-related quantities
by use of (9) and (10).

We now consider the motion of a tracer in a finite
square lattice with Ng sites, of which Ng — 2 are occu-
pied by background particles, one by the tracer, and one
is vacant. As seen in Ref. 9, characteristics of the tracer
motion can be obtained by considering a closed random
walk of the whole system in a part of configuration space
which is constituted by the possible configurations that
the system can assume with the tracer fixed at a given po-
sition in the real-space lattice. This is accomplished by
associating a factor exp(%:6;) to each transition which
involves a displacement of the tracer in a direction +j
in real space. In the case considered here, the config-
urations can be labeled by the position of the vacancy.
The random walk performed by the system is, therefore,
equivalent to a random walk performed by the vacancy in
a frame in which the tracer is at rest. Since each tracer-
vacancy exchange in this frame corresponds to a jump
of the vacancy by two lattice units and the site occupied
by the tracer is not available to the vacancy, the vacancy
performs a free-particle random walk in a regular lattice
with a single defect. By considering the properties of
this random walk it is possible to show that the Laplace
transform of the tracer MSD is given by

w0 = v (S ) o
where
cos6(s)
1 =1 L-t 1 — e—i4mki/L
~ ZNs klz=0kzz=:0 1- TfLJiJT(COS M 4 cos k)’

(12)

where L = Ng /2 and the lattice constant is taken to be
one.

In the limit s — 0%, (11) assumes the form
JZfy 1 k

— + — 13
Ns—152+s’ (13)

R%(s) ~
where

fo = (1 + cos 00)/(1 — COS 00), (14)

k= —sto— 1(1+c10300 + 1—(:10590)((:0800— %)’

(15)

5. — -1 If lf (1 — e—i‘hrkl/l’)(cos%l 4 cos 2"Lk )
ZNg k1 =0 ka—=0 [1 - %(cos 2—’}53 + cos 2121@2 )]z

(16)

with cosfp = cos#(0). Inversion of (13) immediately
yields the form (R2) ~ k + 4Dt, with k as given in (15)
and D = JZfo/4(Ns — 1). Hence, in a finite lattice
with periodic boundary conditions the MSD of the tracer
grows linearly with ¢t as t — oo. The argument leading to
(11)—(16) also applies to the single background particle
case and to low concentrations of background particles
or vacancies. The values obtained for the constant & and
for the diffusion coefficient are confirmed essentially to
machine precision by the exact-enumeration simulations
described below.

In the limit Ng — oo, with a suitably small but finite
concentration of vacancies, (11) and (12) become

2 ZJ s+ ZJ[1+ cosb(s)]
R*s) = (1-o) 5 (HZJ[1 _cosg(s)]) (17)
cosf(s) = (27r12Z
e—i201
/ / d6,d6,.
- 2(s+ZJ) (COS 01 + cos 8)
(18)

It was shown in Ref. 5 that in this case the limit s — 0%
gives rise to a logarithmic correction, that is (11) assumes
the form

1 B Ins
R¥s)=(1-0)ZJfo; + — +E—, (19)

where B and E are constants. We conclude that the
logarithmic term in (R2(t)) is only present in the infinite
system. This term can be thought of as emerging from
transient behavior in the finite lattice. Indeed, it gets
longer with increasing Ns and ceases to be a transient
in the limit Ng — oco. The emergence of new long-time
behavior is indicated by the divergence of (16) in this
limit.

Next, we describe the result of simulations for small
L x L lattices, with L < 12. We have developed an exact
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FIG. 1. Mean-squared displacement (minus linear part)
vs time (logarithmic scale) for a single-vacancy 8 x 8
system, showing the logarithmiclike contribution to be a
transient. The asymptotic expression for the MSD is
(R®) ~ 0.014696 8 + (1.22047772 x 10™*)¢.

enumeration technique®1° for measuring the MSD taking
into account all possible histories of the system. As the
tracer problem involves dynamical disorder, the method
requires mapping the system into a single-particle walk in
configuration space and is very memory-consuming. The
advantage is that the results are free of statistical error
and only limited by numerical error. Because of the mem-
ory requirements, we have concentrated on 3 x 3 periodic
lattices (for arbitrary concentration of background par-
ticles) and on the single-vacancy and single background
particle limits for larger lattices.

A typical plot of (R2) — 4Dt vs Int is shown in Fig.
1. The system is an 8 x 8 periodic lattice containing the
tracer, 62 background particles, and a single vacancy. In
this case D can be calculated from (13), and the lin-
ear contribution 4Dt can be subtracted exactly. We see
that a logarithmiclike contribution appears at intermedi-
ate times (corresponding to the straight line in the plot),
only to disappear at even longer times, indicating that
the MSD is asymptotically of the form (R?) ~ k + 4Dt.
It is instructive to compare this figure with Fig. 1 of Ref.
5, corresponding to a much larger system: the initial de-
velopment of the logarithmic contribution is very similar
in both cases.

An advantage of simulation over theory!! is that we
can see the time scale for crossover to linear behavior of
the MSD. For constant density of background particles,
one would expect that deviations from infinite-system be-
havior happen at times comparable to the diffusion time
of the tracer across the system, given by L?/D. However,
for the case we considered (the single-vacancy problem),

TABLE I. System size, onset time in trial steps, and Monte
Carlo steps per particle (o, to) for linear behavior of the
mean-squared displacement of the tracer particle, and onset
time (MC steps) divided by the fourth power of system length,
for single-vacancy tracer diffusion.

L to (MC steps) to (MC steps/particle) to/L*
3 60 8.6 0.74
4 150 10.0 0.59
5 400 17.4 0.64
6 700 20.6 0.54
8 2000 32.3 0.49
10 6000 61.2 0.60

D ~ 1/L%, and therefore finite-size effects should appear
for t ~ L*. We see from Table I that the times for the
onset of linear behavior, obtained from visual estimation
of plots similar to Fig. 1, appear to obey the scaling
indicated by conventional wisdom.

In summary, we have provided analytical and numer-
ical evidence indicating that the asymptotic dependence
of the mean-squared displacement of a hard-core tracer
particle in a periodic lattice is strictly linear in time.
While we have only shown this explicitly in two dimen-
sions, we expect that the expressions equivalent to (11)—
(16) in higher dimensions should be similar in form.

This new result should be taken into account in two
ways when doing numerical simulations of the tracer
problem. First, if one is interested in measuring D, one
should either simulate the system for times much shorter
than the diffusion time of the tracer across the system,
and fit the MSD with a logarithmic term, or simulate
for times larger than the crossover to linear behavior and
perform a purely linear fit. Plotting a figure similar to
our Fig. 1 is recommended, but this may be impractical
in the cases when D is not exactly known. Second, if one
is interested in measuring the amplitude of the long-time
tails, the times of measurement should be short enough to
avoid both the linear and the crossover regimes. Again,
this may take a considerable amount of trial and error.
Finally, we conjecture that a similar crossover to purely
linear diffusion may be observable in finite-system sim-
ulations of Lorentz gas models. In these the crossover
may be more difficult to observe, as the onset of t~2 tails
takes considerably longer than in the tracer problem.
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