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Abstract. This scientific paper, part of a PhD Thesis currently under execution at the 

Division for Image Processing of the Brazilian National Institute for Space Research 

(DPI – INPE), is committed with building up a methodological guideline for modelling 

urban land use dynamics. A medium-size town in the west of São Paulo State, Bauru, 

was adopted as case study. Its urban structure was converted into a 100 x 100 (m) 

resolution grid, and transition probabilities were calculated for each grid cell by means 

of the “weights of evidence” statistical method and upon basis mainly of the 

information related to the technical and social infrastructure of the town. The 

probabilities therefrom obtained fed a cellular automaton (CA) simulation model – 

DINAMICA- conceived by the Centre for Remote Sensing of the Federal University of 

Minas Gerais (CSR-UFMG), based on a multiscale vicinity approach and stochastic 

transition algorithms. Different simulation outputs for the case study town in the period 

1979-1988 were generated, and statistical validation tests were then conducted for the 

best results, employing a multiple resolution fitting procedure. 
 

This modelling experiment revealed the plausibility of adopting Bayesian empirical 

methods based on the available infrastructure knowledge to simulate urban land use 

change, what implies their further applicability for generating forecasts of growth trends 

either for Brazilian towns or cities worldwide, so as to help planners and local 

authorities in achieving sustainability. 
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1. Introduction 

 

Recent generation models of urban dynamics have been dealing with diverse themes. 

According to Batty (2000), there are currently some twenty or more applications of CA 

to cities, such as the diffusion or migration of resident populations (Portugali et al., 

1997), the competitive location of economic activities (Benati, 1997), the joint 

expansion of urban surface and traffic network (Batty and Xie, 1997), the generic urban 

growth (Clarke et al., 1997), the urban land use dynamics (Deadman et al., 1993; Batty 

and Xie, 1994; Phipps and Langlois, 1997; White and Engelen, 1997; White et al., 

2000) , and so forth. 
 

Specifically regarding urban land use dynamics, it is possible to identify basically three 

main trends of CA models in this field. A first one concerns the deterministic models, 

whose most evident representative is the urban growth study for the San Francisco Bay 

area, conducted by Clarke et al. (1997). Although this model incorporates a certain 

randomness in selecting the cells for urban growth and in promoting the spread of 

growth seeds, its transition rules, which can be spontaneous, diffusive, organic or road-

influenced, are fundamentally deterministic in the sense that the cell suitability for being 

urbanised is not dependent upon probabilistic methods. 
 

A second trend relates to the stochastic models with both deterministic estimations of 

area for land use transition and deterministic transition algorithms. A good example of 

this category of models is the SIMLUCIA, conceived by White et al. (2000), which is 

an integrated model of natural and human systems operating at several spatial scales, 

and was aimed at providing the officials of the Caribbean Island of Santa Lucia with a 

tool to explore possible environmental, social, and economic consequences of 

hypothesised climate changes. 
 

In this model, a sophisticated set of equations taking into account aspects of the natural 

environment is formulated in order to estimate the impact of economic and demographic 

changes on land use. The stochasticity of this model is present in the calculation of the 

probabilities of land use transition for each cell, which is basically a function of the cell 
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suitability for the new activity in question and its relative accessibility for such an 

activity. In the SIMLUCIA transition algorithm, cells are ranked by their highest 

potential, and cell transitions begin with the highest ranked cell and proceed 

deterministically downward, until the number of cells demanded by the above-

mentioned equations is reached. 
 

A third trend concerns the stochastic CA models with both stochastic estimations of 

area for land use transition and stochastic transition algorithms. The modelling 

experiment presented in this paper integrates this third category, in which the transition 

rules are randomised, the cell transition probabilities are calculated through Bayesian 

probabilistic methods (“weights of evidence”), and the Markov chain is in principle 

utilised for the definition of the transition rates for each possible type of land use 

change. An overview of the “weights of evidence” statistical method as well as an 

explanation of how it can be applied to the modelling of urban land use dynamics are 

presented throughout the next section. 
 

2. Methods: A Bayesian Method-Based Cellular Automaton Model 
 

Generalisation Procedures Applied to the Land Use Maps 
 

The city maps provided by the Bauru local authorities presented inconsistencies due to 

the fact that illegal settlements are not shown on the official maps, and not all of the 

legally approved settlements drawn have been in fact implemented. Moreover, some 

urban zones refer to areas which are not yet occupied, and some other zones categories 

do not correspond to the prevailing use indeed encountered within their limits, reflecting 

just the local officials´ intention for their future use. In this way, satellite imagery arise 

as a feasible solution for the identification of urban settlements actually existent, as well 

as for the delineation of the true urban occupation boundaries of the case study town. 

 

The following procedures were applied to the initial (1979) and final (1988) land use 

maps (Figure 1) used in the simulation experiment so as to render them workable by the 

computational model and coherent to the reality they are related to: 
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(i) reclassification of the zones initially assigned by the Bauru local 

authorities according to their dominant and effectively existent use; 

(ii) reclassification of similar zones shown on official maps to only one 

category, e.g.: residential zones of different densities are all reclassified 

to residential zones only; special use zones and social infrastructure 

equipments zones are reclassified to institutional zones only, and so on; 

(iii) adoption of eight land use zone categories: residential, commercial, 

industrial, services, institutional, mixed use zone, leisure/recreation, and 

non-urban zone; 

(iv) exclusion of districts segregated from the main urban agglomeration, i.e. 

those which are located above 10 km from the official urban boundary; 

(v) disregard of the traffic network and minor non-occupied areas in the 

simulations. 

 

 

 

 

 
  

                      

 
                                                                                             N                                                                                                     N 

 
 

Fig. 1 – Official Bauru city maps for the years 1979 (upper left) and 1988 (upper right), 

             and derived land use maps for 1979 (bottom left) and 1988 (bottom right). 
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The land use maps on Figure 1 are the results of the application of the generalisation 

procedures listed above on the official city maps. The yellow colour represents the 

residential use; the orange, the commercial use; the purple relates to the industrial use; 

the blue refers to the institutional use; the red corresponds to the services use zones and 

corridors; the brown is related to the mixed use zones; the green represents the leisure 

and recreation use; and the white refers to the non-urban use. 
 

Exploratory Analysis and Selection of Variables 
 

Some pressing constraints to the process of modelling urban land use dynamics became 

evident during the accomplishment of the experiment reported in this paper, namely: 

 
- the variables available for the modelling analysis not always represent the set 

of necessary variables able to produce highly satisfactory results; 

- the urban land use dynamics is subject to sudden and unforeseeable forces, 

like the landlords´ decisions to develop certain areas in disregard of others, 

which constitute unsuitable factors for modelling; 

- areas subject to “urbanisation booms” - as it is the case of Bauru - are often 

regarded as chaotic or highly complex systems (Clarke et al., 1997), what 

render the current computational modelling technologies not best appropriate 

to cope with such phenomena. 
 

Nevertheless, there is indeed a set of decisive factors for urban land use transition, 

suitable for modelling and commonly filed by city planning departments of local 

governments, and which have effectively guided the modelling experiment in question. 
 

Some of the maps of explaining variables related to the technical and social 

infrastructure of Bauru and employed in the modelling analysis are presented below. 

Initially, these maps were scanned in the hollandaise OCE scanner (model G6035S) and 

digitised in AutoCad release 14. These maps were then exported as files with extension 

DXF to the Geographic Information System (GIS) termed SPRING, conceived by the 

Division for Image Processing of the Brazilian National Institute for Space Research 

(DPI-INPE). It is worth mentioning that these procedures were also adopted for the 
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production of the Bauru city and land use maps presented in Figure 1. In SPRING, the 

maps of variables were then subjected to a preliminary processing, including vector 

edition, polygons identification, elaboration of distance maps and spatial statistical 

analysis maps like the Kernel points density estimator, etc. (Figure 2). 

  
 

 

 

 

 

 
 

 

 

a) b) 

 

 

 

 

 

 

 
 

                                              c)                                                  d) 

 

Figure 2 – Examples of maps of variables: (a) area served by water supply in Bauru, 

                 1979; (b) Kernel estimator for the density of commercial establishments in 

                 Bauru, 1979; (c) density of occupation in Bauru, 1979; (d) map of distance to 

                 industrial zones in Bauru, 1979. 
 

Since the “weights of evidence” statistical method (to be employed in the calculation of 

the cells transition probabilities) is based on the “Bayes theorem of conditional 

probability”, the selection of variables for the modelling analysis should take into 

account the checking of independence amongst pairs of variables chosen to explain the 

same category of land use change. 
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For this end, two methods were used: the Cramers Coefficient (V) and the Joint 

Information Uncertainty (U). In both cases, it is necessary to obtain values from an area 

cross-tabulation between pairs of maps of variables under analysis. Let the area table 

between map A and map B be called matrix T, with elements Tij, where there are i = 1, 

2, ..., n classes of map B (rows of the table) and j = 1, 2, ..., m classes of map A 

(columns of the table). The marginal totals of T are defined as Ti. for the sum of the i-th 

row, T.j  for the sum of the j-th column, and T.. for the grand total summed over rows 

and columns. If the two maps are independent of one another, with no correlation 

between them, then the expected area in each overlap category is given by the product 

of the marginal totals, divided by grand total. Thus the expected area Tij* for the i-th 

row and j-th column is: 

 

                Tij* =      Ti.    T.j               .                   (1)           

                                                              T..  
 

Then, the chi-square statistic is defined as: 
 

                                                                             n        m 

                                    χ 2  =  �    �       ( Tij   -  Tij* )
2
        

                                                                         i=1     j=1                 ,                         (2)  
                                                 Tij*  
 
 

the familiar (observed – expected)2 / expected expression, which has a lower limit of 0 

when the observed areas exactly equal the expected areas, and the two maps are 

completely independent. The Cramers Coefficient (V) is then defined as: 
 

 

             V =                 χ 2         ,                          (3)                               

                                                               T.. M 

 
where M is the minimum of (n-1, m-1).  
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The Joint Information Uncertainty (U) belongs to the class of entropy measures, which 

are also based on the area cross-tabulation matrix T, but can also be used for measuring 

associations. Suppose that the Tij values are transformed to area proportions, p, by 

dividing each area element by the grand total T... Thus, pij = Tij /T.., and the marginal 

proportions are defined as pi. = Ti. /T.. and as p.j = T.j /T... Therefore entropy measures, 

also known as information statistics can be defined using the area proportions as 

estimates of probabilities. Proportions are dimensionless, so entropy measures have the 

advantage over chi-squared measures of being unaffected by measurement units 

(Bonham-Carter, 1994). 

 

Assuming that an area proportions matrix for map A and map B has been determined 

from T, then the entropy of A and B are defined as:  
 

                                                                                             m 

           H (A)  =  -  �    p.j   -  ln p.j                  and                (4)                             
                                                                                        j=1                       
 

                                                                                             n 

           H (B)  =  -  �    pi .  -  ln pi.           ,                    (5)                                   
                                                                                         i=1                       
 

where ln is the natural logarithm. The joint entropy of the combination, H(A,B), is 

simply 

                                                                                          n         m 

      H (A,B) =  -   �    �    pij    ln pij                .                      (6)               
                                                                                      i=1     j=1                    

 

Then the “Joint Information Uncertainty” of A and B, U(A,B), can be used as a 

measure of association and is defined as 
 

 

        U (A,B) =  2   H (A) + H (B) - H (A,B)                 ,               (7) 

                        H (A)  +  H (B)   
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which varies between 0 and 1. When the two maps are completely independent, then 

H(A,B) = H(A) + H(B) and U(A,B) is 0, and when the two maps are completely 

dependent, H(A) = H(B) = H(A,B) = 1, and U(A,B) is 1.  

 

Table 1 shows the codes utilised for each map of variable employed in the modelling 

experiment, and Tables 2 and 3 presents the values obtained for the Cramers Coefficient 

and the Joint Information Uncertainty for the pairs of variables used to explain the same 

type of land use transition. 

 

TABLE 1 – CODES AND MEANINGS FOR THE MAPS OF VARIABLES 
                          

Code Meaning 

water Area served by water supply. 

mh_dens Medium-high density of occupation (25% to 40%). 

soc_hous Existence of social housing. 

com_kern Distances to different ranges of commercial activities concentration, defined by the Kernel estimator. 

dist_ind Distances to industrial zones. 

dist_res Distances to residential zones. 

per_res Distances to peripheral residential settlements, isolated from the urban concentration. 

dist_inst Distances to social infrastructure (institutional) equipments, isolated from the urban concentration. 

exist_rds Distances to main existent roads. 

serv_axes Distances to the services and industrial axes. 

plan_rds Distances to planned roads. 

per_rds Distances to peripheral roads, which pass through non-occupied areas. 

 

For the Cramers Coefficient, the empirically established threshold was 0.45, and for the 

Joint Information Uncertainty, 0.35. As none of the association measure values 

surpassed the thresholds, no variables preliminarily selected for modelling have been 

discarded from the analysis.  

 

In practice, the variables selection routine also include empirical procedures, based on 

the visualisation of distinct variables superposed on the final land use map, so as to 

identify those more meaningful to explain the different types of land use change  

(Figure 3). 
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TABLE 2 – CRAMERS COEFFICIENT FOR PAIRS OF VARIABLES EXPLAINING THE SAME TYPE OF LAND USE CHANGE – BAURU (1979-88) 

 water mh_dens soc_hous com_kern dist_ind dist_res per_res dist_inst exist_rds serv_axes plan_rds per_rds 

water          0.3257   

mh_dens   0.046        0.2617 0.0201 

soc_hous           0.1174 0.048 

com_kern      0.4129 0.1142 0.1218 0.2685 0.2029  0.0434 

dist_ind          0.1466   

dist_res          0.2142   

per_res        0.1487 0.0592   0.1733 

dist_inst         0.0601   0.0765 

exist_rds            0.0239 

serv_axes             

plan_rds            0.0247 

per_rds            

 

TABLE 3 – JOINT INFORMATION UNCERTAINTY FOR PAIRS OF VARIABLES EXPLAINING THE SAME LAND USE CHANGE – BAURU (1979-88) 

 water mh_dens soc_hous com_kern dist_ind dist_res per_res dist_inst exist_rds serv_axes plan_rds per_rds 

water          0.0767   

mh_dens   0.00176        0.070062 0.000272 

soc_hous           0.018788 0.004655 

com_kern      0.34472 0.031004 0.05202 0.14993 0.10996  0.006365 

dist_ind          0.04766   

dist_res          0.10024   

per_res        0.05592 0.00774   0.055321 

dist_inst         0.01017   0.023836 

exist_rds            0.001957 

serv_axes             

plan_rds            0.002967 

per_rds            
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Fig. 3 – Example of the overlay (conducted in SPRING) of different explaining 

             variables existent in the city of  Bauru in 1979 on the final land use map - 1988, 

             so as to identify those more meaningful to explain the transition “residential use 

 - mixed use”. The distance ranges are built in relation to planned roads; the 

 purple polygons correspond to social housing; and the red blocks refer to areas 

 with medium-high density of occupation (25% to 40%).  
 

Estimation of Transition Rates 
 

As previously mentioned, eight categories of land use zones were defined for the 

modelling experiment: residential, commercial, industrial, institutional, services, mixed 

use, leisure/recreation, and non-urban use. The mixed use zone basically comprises the 

residential, commercial, and services uses. The leisure/recreation zone includes parks, 

the city zoo and other public green areas. For the specific case study town in question – 

Bauru – in the period 1979-1988, five types of land use change were detected (Table 4). 

 

In order to calculate land use transition rates for the period 1979-1988, the initial and 

final land use maps were converted to raster files with extension TIFF and resolution 

100 x 100 (m), and then exported to the IDRISI Geographic Information System. In 

IDRISI, a cross-tabulation operation was made between both land use maps (See Figure 
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1) so as to generate transition percentages for the five existent types of land use change 

(Table 5). 

 

TABLE 4 - IDENTIFIED TYPES OF LAND USE CHANGE FOR THE CITY 

                    OF BAURU, IN THE PERIOD 1979-1988, AND RESPECTIVE 

                    CODES 
 

Code Type of Land Use Change 

NU_RES Non-Urban to Residential 

NU_IND Non-Urban to Industrial 

NU_SERV Non-Urban to Services 

RES_SERV Residential to Services 

RES_MIX Residential to Mixed Use 

 

TABLE 5 – LAND USE TRANSITION RATES ESTIMATED FOR THE CITY 

                    OF BAURU, IN THE PERIOD 1979-1988  
 

 Non-Urban Resident. Commercial Industrial Institutional Services Mixed Use Leis./Recr. 

Non-Urban 0.9171331 0.0697519 0 0.0095301 0 0.0035848 0 0 
Resident. 0 0.9379833 0 0 0 0.0597520 0.0022647 0 
Commercial 0 0 1.0000000 0 0 0 0 0 
Industrial 0 0 0 1.0000000 0 0 0 0 
Institutional 0 0 0 0 1.0000000 0 0 0 
Services 0 0 0 0 0 1.0000000 0 0 
Mixed Use 0 0 0 0 0 0 1.0000000 0 
Leis./Recr. 0 0 0 0 0 0 0 1.0000000 

 
Due to the stochastic structure of the DINAMICA transition algorithms, the envisaged 

transition rates established in the above table are not always reached. 

 

For the estimation of land use percentages in the case of modelling land use change 

forecasts through DINAMICA, the Markov chain is to be employed. According to 

Hobbs (1983), the Markov chain is a mathematical model designed to describe a certain 
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type of process that moves in a sequence of steps through a set of states, whose formula 

is defined as: 
 
 

 

   ∏(t +1) = P. ∏(t )             ,                                                (8) 

 

where ∏(t ) is a column vector, with n elements, that represents the system condition in 

a certain time t (e.g. area percentages for each ni land use category or state); ∏(t +1) is 

the vector representing the occupation of n states in a given future time t +1; and P is 

the transition probabilities matrix or the table for land use transition rates. 

 

An important constraint of the Markov model lies on the fact that, in principle, it 

supposes that transition probabilities do not change over time (stationary process). 

Moreover, given its stochastic nature, the Markov chain masks the causative variables. 

It is not an explanatory model, and is thus of no use in understanding the causes and 

driving factors of land use transition processes. On the other hand, the Markov chain 

analysis has the great advantage of presenting a mathematical and operational 

simplicity. Simple trend projection involves no more than matrix multiplication, and the 

only data requirement is for current land use information (JRC and ESA, 1994).  

 

Reckoning of the Cells Land Use Transition Probabilities  
 

As previously said, the “weights of evidence” statistical method, employed in the 

calculation of the cells transition probabilities, is based on the “Bayes theorem of 

conditional probability”. Basically, this theorem concerns the favourability to detect a 

certain event, which can be in the current case a given category of land use change (e.g. 

non-urban use to residential use), provided that an evidence (e.g. water supply area), 

also called explaining variable, has already happened (Figure 4). The evidences or 

explaining variables in the experiment presented in this paper mainly refer to the 

technical and social infrastructure of the case study town, Bauru. 
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            Study Area, A 

                                    

                                          Explaining Variable (Water Supply, S) = present 

 

                                                                                      Event: Change from Non-Urban to Residential Use, R 

 

                           Explaining Variable (Water Supply,  S) = absent 

 

Fig. 4 – Diagram to illustrate weights of evidence calculations. 

 

The favourability to find the event (change from non-urban to residential use) R given 

the presence of the evidence (water supply) S can be expressed by: 

 

 P {R�S} =  P {R ∩ S}                               (9)  

               P {S} 

 

where P {R�S} is the conditional probability of occurring the event R given the presence 

of the explaining variable S. But, P {R ∩ S} is equal to the proportion of total area  

occupied by R and S together. Supposing N is the counting of map cells (area of an 

event or an evidence), then the above formula can be rewritten as: 
 

 

 P {R�S} =  N {R ∩ S}                              (10)               

               N {S} 

 

In order to obtain an expression relating the posterior probability of the event R in terms 

of the prior probability and a multiplication factor, we note that the conditional 

probability of being on the explaining variable map S, given the presence of the event R 

is defined as: 

 

 

 P {S�R} =  P {S ∩ R}                                        (11)               

               P {R} 
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Since P {S ∩ R} is the same as P {R ∩ S},  Equations 9 and 11 can be combined to solve 

for P {R �S}, satisfying the relationship: 

 

 

P {R �S} = P {R} . P {S�R}                             (12)               

                    P {S} 

 

A similar expression can be derived for the posterior probability of the event R 

occurring given the absence of the evidence S. Thus, 

 

 

P {R �S} = P {R} .  P {S�R}                 (13) 

                    P {S} 

 

All the equations above can be expressed in an odds form. Odds are defined as a ratio of 

the probability that an event will occur to the probability that it will not occur. The 

weights of evidence method uses the natural logarithm of odds, known as log odds or 

logits. To clarify this approach, Equation 12 will be converted to odds. For this end, 

both sides will be divided by P {R �S}, leading to: 
  

 

P {R �S}  =   P {R} . P {S�R}                (14) 

    P {R �S}        P {R �S} .  P {S} 

 
But from the definitions of conditional probability: 

 

 

  P {R� S}  =   P {R ∩ S}    =    P {S� R} . P {R}                           (15)  

                P{S}            P{S} 

 

Substituting Equation 15 in Equation 14, yields the following: 
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          P {R� S}  =   P {R}  .  P {S}  .  P{S� R}        (16) 

                     P {R� S}       P {R}  .  P {S}  .  P{S� R} 

 

Substituting odds into Equation 15 and cancelling leads to the desired expression: 

 

              O {R� S}  =  O {R}  .  P{S� R}        (17) 

                                                            P{S� R} 

 

where O {R� S}  is the conditional (posterior) odds of R given S, O {R} is the prior odds 

of R and P{S� R}/P{S� R} is known as the sufficiency ratio (LS). In weights of evidence, 

the natural logarithm of both sides of Equation 17 are taken, and loge LS is the positive 

weight of evidence W+, which is calculated from the data. Then: 
 

 

                logit {R� S}  =  logit {R}  +  W+        (18) 

              

 

Similar algebraic manipulations lead to the derivation of an odds expression for the 

conditional probability of R given the absence of the evidence S, with the result being: 

 

              O {R� S}  =  O {R}  .  P{S� R}        (19) 

                                                            P{S� R} 

 
 

The term P{S� R} / P{S� R} is called the necessity ratio (LN). In weights of evidence, 

the negative weight of evidence  W – is the natural logarithm of LN, or loge LN. Thus in 

logit form, Equation 19 is: 

 

 

                 logit {R� S}  =  logit {R}  +  W -        (20) 
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LS and LN are also called likelihood ratios. When events and evidences are positively 

correlated, the value of LS is greater than 1, whereas LN is in the range [0,1]. However, 

if an evidence is negatively correlated with the events, LN would be greater than 1 and 

LS would be in the range [0,1]. If the evidence is uncorrelated with the events, then 

LS=LN=1, and the posterior probability equals the prior probability, and the probability 

of an event would be unaffected by the presence or absence of a certain evidence. 

 

Similarly, W+ is positive, and  W- is negative, due to the positive correlation between the 

evidences and the events. Conversely W+ would be negative and W- positive for the case 

where a very limited part of the event occur on the evidence area than would be 

expected due to chance. If the events are independent of whether the evidence is present 

or not, then W+ = W- = 0, and the posterior = the prior, as above (Bonham-Carter, 

1994). 

 

A useful and commonly used measure of spatial association between an evidence and a 

given event is the contrast C, whose formula is given by: 

 

            C  = W+  -  W-                                          (21) 

 

The question of determining whether the magnitude of the contrast is large enough to be 

statistically significant can be tested by its variance, estimated from the following 

expression (Goodacre et al., 1993): 

 

 

  S2 (C) =           1          +         1           +             1           +           1                      (22) 

                  N {S ∩ R}             N {S ∩ R}             N {S ∩ R}          N {S ∩ R}  

 

 

In the weights of evidence method, there is a specific way for calculating probability 

ratios (odds) in the case of n maps of evidence (Mi). The general expression for 

combining i=1,2,…,n maps is either: 
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                n 

                             O {R� M1 ∩ M2 ∩ M3 ∩ ... ∩ Mn} = O {R} . ∏  LSi                       (23) 
                        i=1 

 

 

for the likelihood ratios or: 

 

 

                     n 

                        logit {R� M1 ∩ M2 ∩ M3 ∩ ... ∩ Mn} = logit {R} + �  W+
i                  (24) 

                              i=1 

 

 

for the weights. In these general formulas, the LS becomes LN, and W+ becomes W -, if 

the i-th evidence is absent instead of present. Where data is missing for a particular map 

layer in some locations, the likelihood ratio is set to 1, or the weight is set to 0. These 

two last equations are the computing formulae for combining a set of evidence maps 

with the Bayes model. The principal advantages of the “weights of evidence” method 

are: 

 

• the method is objective, and avoids the subjective choice of weighting 

factors; 

• multiple evidences maps can be combined with a model that is 

straightforward to program with a modelling language; 

• conversion of multistate evidences maps to binary maps, where each distance 

range is treated as a present/absent evidence; 

• input maps with missing data (incomplete coverage) can be accommodated 

in the model; 

• uncertainty a) due to variances of weights, and b) due to missing data can be 

modelled to show the effect on the posterior probability. 

 

Some of the disadvantages of the weights of evidence modelling are: 
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• the tests for conditional independence between pairs of evidence maps 

involve contingency table calculations, generally carried out outside the GIS 

environment, using data files generated by the GIS; 

• weights of evidence, in common with other data-driven methods, is only 

applicable in regions where the event (also called response variable) is fairly 

well known (Bonham-Carter, 1994).  

 

For the particular case of the DINAMICA simulation model, adopted for the modelling 

experiment being considered, the cells transition probabilities are calculated in a 

different form from Equations 23 and 24 previously presented. Its transition probability 

expression is given by: 

 

 

                                                                                                               n 

                                                  �  W +  
                                               P   =           e   i=1         (25) 
                                  n 

                                                       �  W +   
                                                              1  +   e  i=1 
 
 

 

This formula shows a clear similarity with the one employed for the calculation of 

probability in the logistic regression method (also known as logistic function). In the 

above case, the sum of the positive weights of evidence (W+) corresponds to the product 

of the linear regression coefficients by the independent variables adopted in the 

regression analysis.  

 

The first step in the very process of calculating the cells transition probabilities using 

DINAMICA is to obtain a cross-tabulation map (Figure 5) between the initial and final 

land use maps elaborated for the city of Bauru, respectively for the years 1979 and 

1988, both previously presented in Figure1.  
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Fig. 5 – Cross-tabulation map between the initial (1979) and final (1988) land use maps 

             elaborated for the city of Bauru. Types of land use permanence as well as 

             transition are listed on the legend.  

 

In IDRISI, the land use cross-tabulation map of Bauru (1979-1988) was used to 

generate land use transition maps for each of the five possible types of land use change 

presented in Table 4. This was done through reclassification tables (“edit” command), 

on which the following rules were observed: 

 

- all raster values corresponding to classes of land use permanence or 

transition whose initial land use was different from the initial land use 

category in the considered type of land use change were assigned value 0 

(black colour). This reclassification to value 0 is automatic for raster values 

not included in the “edit” table; 

- all raster values corresponding to classes of land use transition whose initial 

and final land use categories were equal to the initial and final categories of 

the land use change at issue were assigned value 2 (blue colour);  

- all other remaining classes of land use permanence or transition were 

assigned value 1 (green colour).  
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Examples of “edit” tables are shown on Figure 6, and an example of a land use 

transition map is presented on Figure 7. 

 

 

 

 

 

 

 

Fig. 6 – Example of an edit table for the “non-urban_residential” land use change on the 

             left, and for the “residential_services” change on the right. 

 

Fig. 7 – Non-urban_residential land use transition map for Bauru in the period 1979- 

             1988. 

 

Once all the possible types of land use transition maps were elaborated (nu_res; nu_ind; 

nu_serv; res_serv; res_mix), they were then subjected to partial cross-tabulations with 

selected explaining variables (evidences) maps, listed on Table 1, according to an 

apparent interdependence between a certain type of land use transition and a given 

explaining variable. The evidences maps, pre-processed in the SPRING Geographic 

Information System, were in the same manner as the initial and final land use maps 
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converted to raster files with extension TIFF and resolution 100 x 100 (m), and then 

exported to IDRISI.  
 

The partial cross-tabulations disregard the raster values 0 (black colour) in the land use 

transition maps and are accomplished through the “ermatt” command of IDRISI. An 

example of these partial cross-tabulations outcome is shown below (Figure 8). 
 

 

 

 

 

 

 

 

 

 
Fig. 8 – Example of a partial cross-tabulation table between the land use transition map 

             “non-urban – residential” (nu_res) and the map of distances to main existent 

             roads (exist_rds). The numbers 1 and 2 in the first line are respectively related 

             to classes green and blue of the land use transition map “nu_res”, and the 

             numbers 1 to 7 on the left column refer to labels for distance ranges from the 

             main existent roads in Bauru in 1979. 
              

The numerical values of cells proportions existing in the absence/presence of a binary 

evidence (e.g. water supply) or in the different ranges of distances maps and found to be 

overlying on either class 1 (green colour) or 2 (blue colour) of the land use transition 

maps are (for each cross-tabulation table) selectively transferred to EXCELL files 

specially created for the calculation of the weights of evidence (See Equations 17 to 20). 

 

Using the values for the positive weights of evidence W+ (Table 6) concerning the 

several evidences maps employed in the analysis of each category of land use change, 
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the DINAMICA simulation model will then calculate the cells transition probabilities 

(See Equation 25) for the five types of land use transition.  

 

TABLE 6 – POSITIVE WEIGHTS ESTIMATED FOR THE LAND USE 

                    TRANSITIONS IN RELATION TO THEIR RESPECTIVE 

                    EVIDENCES FOR THE CITY OF BAURU IN THE PERIOD 1979- 

                    1988. 
 

TYPE OF EVIDENCE (EXPLAINING VARIABLE) LAND USE 

TRANSITION VALUES FOR THE POSITIVE WEIGHTS OF EVIDENCE 

 

AREA  SERVED  BY  WATER   SUPPLY  

PRESENT ABSENT      

 
RES_SERV 

-0.661126 0.2883432      

 

MEDIUM-HIGH DENSITY OF OCCUPATION (25% TO 40%)  

PRESENT ABSENT      

 
RES_MIX 

0.6452582 -0.063522      

 

SOCIAL  HOUSING  SETTLEMENTS   

PRESENT ABSENT      

 
RES_MIX 

2.4678421 -0.32148      

 

DISTANCES TO RANGES OF COMMERCIAL ACTIVITIES CONCENTRATION, (KERNEL ESTIMATOR) 

0 -500 (m) 500-1000 (m) 1000-1500 (m) 1500-10000 (m) 10000-30000 (m) > 30000 (m)  

 

 

NU_RES 

3.749359 2.1061142 1.864181 0.4914826 -0.32329 0  

0 -500 (m) 500-1000 (m) 1000-1500 (m) 1500-10000 (m) 10000-30000 (m) > 30000 (m)  
 

 

 

 

 

 

 

NU_SERV 
3.4118828 4.4690133 2.9118401 0.8777834 0 0  

 

DISTANCES  TO  INDUSTRIAL  ZONES 

0 -500 (m) 500-1000 (m) 1000-1500 (m) 1500-2000 (m) 2000-5000 (m) 5000-10000 (m) > 10000 (m) 

 
NU_IND 

3.8624294 4.0157265 3.792217 3.4523225 1.7633056 0 0 

 

DISTANCES  TO  RESIDENTIAL  ZONES 

0 -500 (m) 500-1000 (m) 1000-2000 (m) 2000-5000 (m) 5000-10000 (m) > 10000 (m)  

 
NU_SERV 

2.1439745 1.5228203 0.6209727 -0.06484 0 0  
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CONT. OF TABLE 6 – POSITIVE WEIGHTS ESTIMATED FOR THE LAND 

                     USE TRANSITIONS IN RELATION TO THEIR RESPECTIVE 

                     EVIDENCES FOR THE CITY OF BAURU IN THE PERIOD 1979- 

                     1988. 
 

TYPE OF EVIDENCE (EXPLAINING VARIABLE) LAND USE 

TRANSITION VALUES FOR THE POSITIVE WEIGHTS OF EVIDENCE 

 

DISTANCES TO PERIPHERAL RESIDENTIAL SETTLEMENTS, ISOLATED FROM THE URBAN CONCENTRATION 

0 -500 (m) 500-1000 (m) 1000-2000 (m) 2000-5000 (m) 5000-10000 (m) > 10000 (m)  

 
NU_RES 

1.9675468 1.6151719 1.3924275 0.892197 -0.625689 -0.469075  

 

DISTANCES TO SOCIAL INFRASTRUCTURE (INSTITUTIONAL) EQUIPMENTS, ISOLATED FROM THE URBAN CONCENTRATION 

0 -500 (m) 500-1000 (m) 1000-3000 (m) 3000-8000 (m) 8000-15000 (m) > 15000 (m)  

 
NU_RES 

0.0034705 0.6003806 1.253931 0.7274862 -0.358902 -0.08934  

 

DISTANCES  TO  MAIN  EXISTENT  ROADS 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1250 (m) 1250-2000 (m) >2000 (m) 

 
NU_RES 

0.2305106 0.3195579 0.3527951 0.5097521 0.4432425 0.1961828 -0.084568 

 

DISTANCES TO THE SERVICES AND INDUSTRIAL AXES 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1250 (m) 1250-2000 (m) >2000 (m) 

 
NU_IND 

2.722019 2.7998156 2.675631 2.6245036 2.5254157 1.7274357 -3.832114 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1250 (m) 1250-2000 (m) >2000 (m) 
 

 

 

 

 

 

NU_SERV 
3.5077549 3.3209421 2.9174182 1.8686185 0.450248 0 0 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1250 (m) 1250-2000 (m) >2000 (m) 
 

 

 

 

 

 

RES_SERV 
2.7801176 1.94798 1.4614056 0.8879287 -0.297012 -1.411855 -3.284054 

 

DISTANCES  TO  PLANNED  ROADS 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1250 (m) 1250-2000 (m) >2000 (m) 

 
RES_MIX 

3.5059276 1.8631255 0 0 0 0 0 

 

DISTANCES TO PERIPHERAL ROADS, WHICH PASS THROUGH NON-OCCUPIED AREAS 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1500 (m) 1500-2500 (m) >2500 (m) 

 
NU_RES 

2.3770299 2.268923 2.0682195 1.9838132 1.4440168 0.8572809 -0.126596 

0 -250 (m) 250-500 (m) 500-750 (m) 750-1000 (m) 1000-1500 (m) 1500-2500 (m) >2500 (m) 
 

 

 

 

 

 

RES_MIX 
1.7750028 1.6519953 1.848404 0.9032325 0 0 0 
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By means of the cells transition probabilities, DINAMICA will generate the respective 

transition probabilities maps (Figures 9 to 13) for each of the five types of land use 

change existing in Bauru from 1979 to 1988. These maps are seen in ERMAPPER, a 

Geographical Information System employed by DINAMICA for visualisation purposes. 

 

It is worth mentioning how these probabilities maps detect considerably well the 

transition areas (blue colour) in the corresponding land use transition maps, for all the 

reddish regions in the probabilities maps relate to the very areas owning the highest 

transition probabilities rates. 
 

 

 

Fig. 9 - Map of cells transition probabilities, on the left, and map of land use transition 

            “non-urban – industrial” (nu_ind), on the right. 

 

Fig. 10 - Map of cells transition probabilities, on the left, and map of land use transition 

              “non-urban – services” (nu_serv), on the right. 
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Fig. 11 - Map of cells transition probabilities, on the left, and map of land use transition 

              “non-urban – residential” (nu_res), on the right. 

 

Fig. 12 - Map of cells transition probabilities, on the left, and map of land use transition 

              “residential – services” (res_serv), on the right.                 

 

Fig. 13 - Map of cells transition probabilities, on the left, and map of land use transition 

              “residential– mixed use” (res_mix), on the right. 
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Model Calibration 
 

For the calibration of the model designed to emulate urban land use transition for the 

town of Bauru in the period 1979 – 1988, empirical procedures were adopted. They 

basically concern the visual comparative analysis, for each type of land use change, 

amongst the general trends of preliminary simulation results, the hints provided by both 

the transition probabilities map and the land use transition map, and the guideline 

information contained in the simultaneous overlay of different explaining variables 

maps upon the final land use map in vector format (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 – Example of visual comparative analysis for the model empirical calibration in 

               relation to the “residential-services (res_serv)” land use change. The transition 

               probabilities map can be seen on the upper left corner; the land use transition 

               map, on the upper right; a preliminary simulation result, on the lower left 

               corner; the real final land use map, on the lower right corner; and a 

               simultaneous overlay of the water supply map and the services axes distances 

               map upon the borders of the final land use map (1988) is seen in the centre. 

 

The model calibration, on the other hand, is as well accomplished by the analysis of 

scatter plots relating subcategories of evidences (distances ranges), whenever they are 

available, with their respective positive weights of evidence. In a general manner, when 
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the plots present a good fit of trendlines (which can assume different orders and types), 

i.e. when the lines do not demand very complex models for adjustment, the evidences to 

which they are associated are highly prone to be included in the model (Figure 15).  
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 – Examples of scatter plots and respective trendlines for the relations between 

               subcategories of evidences (X axis) and their corresponding positive weights 

               of evidence (Y axis), considering different types of land use change. The upper 

               plots show cases of poor fit, and hence, of evidences exclusion. On the 

               contrary, the lower plots present a good adjustment of trendlines, what 

               implies the high probability of inclusion of such evidences in the urban land 

               use dynamics model at issue. The final decision towards the inclusion or 

               exclusion of a given evidence will always rely upon a broad judgement, in 

               which the environmental importance of the evidence and its coherence 

               concerning the phenomenon (land use transition) being modelled are analysed. 
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All the above-mentioned calibration procedures led to the final selection of sets of 

evidences (explaining variables) maps for each of the existing five types of land use 

change in the city of Bauru from 1979 to 1988 (Table 7). 

 

TABLE  7 – SETS OF EVIDENCES MAPS FOR EACH TYPE OF LAND USE 

                     TRANSITION EXISTING IN THE CITY OF BAURU FROM 1979 

                     TO 1988.   
 
 

 

 MAPS       EVIDENCES CODES        NU_RES         NU_IND       NU_SERV     RES_SERV     RES_MIX     

   water     
 

                      mh_dens  

                      soc_hous 

        

                     com_kern 

 

                       dist_ind 

 

                       dist_res 

 

                       per_res 

 

                      dist_inst 
 

                     exist_rds 
 

                    serv_axes 
 

                     plan_rds 
 

                      per_rds 
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All the evidences maps presented in Table 7 (and whose codes meanings are listed on 

Table 1) were exported from IDRISI as raster files with extension TIFF. These maps 

were altogether imported in ERMAPPER as a single file, i.e. a unique data set, owning 

extensions ALG (regarding the visualisation algorithm) and ERS (relating to the raster 

data themselves), which then have been employed by DINAMICA in the generation of 

simulations. 
 

In a general way, the final sets of evidences maps used in the land use transition 

simulation model for the city of Bauru in the period 1979-1988 can be classified 

according to the following analysis categories (Table 8): 
 

TABLE 8 – CLASSIFICATION OF THE FINAL SETS OF EVIDENCES MAPS 

                     USED IN THE URBAN LAND USE DYNAMICS MODEL 
 

ANALYSIS CATEGORIES SELECTED EVIDENCES 

Infrastructure Area served by water supply (water). 

 

 

Social Infrastructure 
Proximity to concentrations of commercial activities (com_kern) as 

well as to social infrastructure equipments (dist_inst). 

 

Accessibility 

Distances to main roads (exist_rds), to the services and industrial 

axes (serv_axes), to planned roads (plan_rds) and to peripheral 

roads (per_rds). 
 

 

Neighbourhood Influences 

Proximity to classes of residential use (soc_hous; dist_res; per_res) 

or of industrial use (dist_ind); occurrence of medium-high density 

of occupation (mh_dens). 

 

3. Results and Discussion 
 

Upon basis of the carried out calibration process, it becomes evident that the probability 

of certain non-urban areas in the city of Bauru to shelter residential settlements 

(“nu_res” land use transition) largely depends on the previous existence of this type of 

settlements in their surroundings, on the greater proximity of these areas to commercial 

activities clusters as well as on the available accessibility to such areas. 
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As to the transition of non-urban areas to industrial use (nu_ind), there are two great 

driving forces: the nearness of such areas to the previously existent industrial use and 

the availability of road access. This can be explained by the fact that in the industrial 

production process, the output of certain industries represent the input of other ones, 

what raises the need of rationalisation and optimisation of costs by the clustering of 

plants interrelated in the same productive chain. Furthermore, plots in the vicinities of 

industrial areas are often prone to be devaluated for other uses, what makes them rather 

competitive for the industrial use. 

 

Regarding the transition of non-urban areas to services use (nu_serv), three major 

factors are crucial: the proximity of these areas to clusters of commercial activities, their 

closeness to areas of residential use, and last but not least, their strategic location in 

relation to the N-S / E-W services axes of Bauru. The first factor accounts for the 

suppliers market (and in some cases also consumers market) of services; the second 

factor represents the consumers market itself; and the third and last factor corresponds 

to the accessibility for both markets related to the services use. 

 

The transition “residential to services use” (res_serv) supposes the insertion of services 

into previously consolidated urban areas. In this way, since this transition type already 

takes place amid the suppliers and consumers markets, it will solely prioritise the 

strategic location in relation to the N-S / E-W services axes of Bauru, besides of course, 

the existence of water supply, which in the specific case of Bauru do not correspond to 

the whole urbanised area. 

 

Finally, the last type of land use transition concerns the shift from residential use to 

mixed use (res_mix). The mixed use zones, which actually play the role of urban 

subcentres, constitute a sort of commercial centres consolidation, which in a later stage 

start to also attract services and social infrastructure equipments besides commercial 

activities themselves. Therefore, new mixed use zones arise in more peripheral areas, 

where a greater occupational gathering is at the same time assured. Thus, the decisive 

factors for this last type of land use change are:  
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• existence of medium-high density of occupation (higher density values only 

occur in the central commercial zone of the town or in the immediacies of 

already existent mixed use zones);  

• presence or proximity of social housing settlements (for they shelter the 

greatest occupational densities in more peripheral areas, and hence, greater 

consumers markets);  

• nearness to planned or peripheral roads, since new mixed use zones arise in 

farther areas of the town. 
 

After the calibration of evidences maps sets is accomplished, a new calibration process 

concerning the script parameters of the DINAMICA simulation model takes place. Such 

parameters refer to the number of iterations (runs), proportion of cells transition by 

contiguity (“expander” operator) and by nucleation (“patcher” operator), average size 

and variance of patches to be generated either by the expander or patcher operators, etc. 
 

The expander is an algorithm of the DINAMICA model which realises transitions from 

a state i to a state j only in the adjacent vicinities of cells with state j. Its procedures 

routine is the following:  
 

- identification of frontier cells of class j;  

- increase of their probability value according to the number of neighbours of 

class j found in a 3 x 3 window, i.e.:  
 

 

             P final  =   number of neighbours of class j    *   P initial                        (26) 

        number of possible neighbours  
 

 

      where the number of possible neighbours is 8 (9 – 1); 
 

- selection of a random number between 0 and 255. If the selected number is 

smaller than the cell transition probability (also ranging from 0 to 255), the 

cell is specially reserved to take part in a second selection process, in which 

the state transitions actually take place. On the other hand, if the randomly 
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selected number is greater than the cell transition probability, the cell is 

discarded. In this first selection process, a total of ten times as much the 

number of cells required for the transition to state j (estimated either by a 

cross-tabulation table or the Markov model) are reserved for the second stage 

of selection; 

- in the second stage, a new random number between 0 and 255 is selected. If 

such a number is smaller than the cell transition probability, the cell changes 

its state to j, otherwise it remains in its original state. 
 

The patcher operator, on its turn, is an algorithm of the DINAMICA model that realises 

transitions from a state i to a state j only in the adjacent vicinities of cells with state 

other than j. Its procedures routine is the following:  
 

- random selection of a number between 0 and 255. If the selected number is 

smaller than the cell transition probability (also ranging from 0 to 255), the 

cell changes its state to j, otherwise it remains in its original state (Soares-

Filho, 1998; Soares-Filho et al., 2001). 
 

The script parameters of DINAMICA that produced the best simulation results are 

presented in Table 9. 
 

TABLE 9 – FINAL PARAMETERS OF THE DINAMICA MODEL SCRIPT 

 

LAND USE 

TRANSITION 

Average Size       

of Patches  

Variance of 

Patches Size 

Proportion of 

“Expander” 

Proportion of 

“Patcher” 

Number of  

Iterations 

NU_RES 1100 500 0.65 0.35 5 

NU_IND 320 1 1.00 0 5 

NU_SERV 25 2 0.50 0.50 5 

RES_SERV 25 2 0.10 0.90 5 

RES_MIX 35 2 0 1.00 5 
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An example of the final DINAMICA script window is shown below (Figure 16). 

 

Fig. 16 – Final DINAMICA script window containing the parameters that generated the 

               best simulations results. 

 

Due to the randomness of the DINAMICA transition algorithms, even though the same 

sets of evidences maps for each type of land use transition and the same script 

parameters are kept in different runs, distinct simulations results will be produced after 

each run of the model. In this way, the best urban land use simulation results for the city 

of Bauru in the period 1979–1988 are presented in Figure 17. 

 

The patcher algorithm proved to be of great suitability for the modelling of residential 

settlements disconnected from the main urban agglomeration. Nevertheless, the shapes 

of these settlements in the modelling results do not strictly coincide to those observed in 

reality. This happens because these contours are associated with the real state properties 

limits. Since legal actions for the merging or split of plots may occur at any time and 

drastically alter their form, such boundaries can be regarded as highly unstable factors, 

and thus, inappropriate for modelling. 

 

The services corridors, in light brown, were well modelled in all simulations. The 

industrial use zone, in  light  green, was considerably  well  detected  in  all  of  the three 
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   Simulation 1 – S1 

 

 

 

           

 

          Final Land Use Map                 Simulation 2 – S2 

 

 

 

 

 

 

 

 

 

 

           Simulation 3 – S3 

 

 

 

 

 

 

 

Fig. 17 – Bauru final land use map and simulations results for the period 1979-1988. 



 36 

simulations results, specially in S2 and S3. The leisure and recreation zones (yellowish 

green), the institutional zones (red) and the central commercial zone (light blue) did not 

suffer any transitions. The new mixed zone that arose in the north-western part of the 

town during the simulation period was rather well modelled, particularly in S1 and S3.  

 

Lastly, the shifts from non-urban areas to residential use represented the most 

challenging category of land use transition in the modelling experiment at issue. The 

reasons for the difficulties in detecting their shapes have been previously commented in 

this paper. It is worth remarking that 65 % of this type of transitions occur through the 

expander algorithm (Table 9). An evident shortcoming of this algorithm lies on the fact 

that, after the random selection of a cell for transition, neighbouring cells to it also 

undergo transitions regardless of their transition probability values. 

  

The R & D team of CSR-UFMG, entrusted with the continuous upgrading programme 

of DINAMICA, is currently working to tackle this problem. Other enhancements such 

as the incorporation of fractal parameters in the transition algorithms as well as the 

possibility to define patches average sizes and variances for the expander and patcher 

algorithms separately are also envisaged. 

 

To conclude, it is worth stressing here the wide feasibility (and the cells transition 

probability maps are a concrete prove) to optimise the simulations results by means of a 

model which embraces more refined algorithmic logics, highly suitable for the urban 

phenomena modelling under consideration. 

 

4. Statistical Validation of the Model 

 

With the purpose to conduct statistical tests for the spatial validation of models of land 

use dynamics, Constanza (1989) presents a procedure entitled “Multiple Resolutions 

Method”, which can be applied to a wide variety of spatial resolutions through the 

change of size in a sampling window.  
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This sampling window moves over the entire images (Figure 18), and the average fit 

between two given scenes (the real and the simulated one) for a particular window size 

is calculated by the following expression:  

     

 

 
         tw   p   ai1 – ai2 
               �        1 - � 
                                 s=1                   i=1            2 w2 
               Fw    =             (27) 
             tw 
 
 

 

where Fw is the fit for the window of size w x w; ai1 is the number of cells belonging to 

class i in scene 1 (simulated image) and ai2 is the number of cells belonging to class i in 

scene 2 (real image) in the sampling window; p refers to the number of different classes 

found in the sampling window and tw, to the total number of windows sampled in a 

scene for a window size of w x w. 

 
 

The total goodness of fit is then given by the equation below:  
 

 

     n 

                     �   Fw  e – k (w – 1) 

        Ft  =    w=1
n                          (28) 

                      �   e – k (w – 1) 

                     w=1 
 
 
 
where Ft is the average of all fit measures obtained by the different window sizes 

employed in the analysis, Fw is the fit for sampling windows of linear dimension w, and 

k, a constant. 



 38 

           SCENE 1              SCENE 2 
 

                                  1 x 1 WINDOW 
             F = 1 

1 1 1 1 2 2 2 3 3 3 1 1 2 2 2 2 2 2 3 3 
1 1 1 2 2 2 3 3 3 3 1 1 1 1 2 3 3 3 3 3 
1 1 2 2 2 3 3 3 3 3 1 1 1 2 3 3 3 3 3 3 
3 3 2 2 3 3 3 3 3 3 3 1 2 2 3 3 3 4 4 4 
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
1 1 1 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 
2 2 2 2 2 2 2 2 3 3 1 1 2 2 2 2 2 2 3 3 
3 3 3 3 3 3 3 3 3 3 1 2 2 3 3 2 2 3 3 3 
3 3 3 3 2 2 3 3 3 3 3 3 3 3 2 2 2 3 3 3 
3 3 3 3 2 2 2 2 3 3 

 
            2 x 2 WINDOW 
 
             F = 1 – 4/8 = .50 
 
 
            3 x 3 WINDOW 
 
            F = 1 – 6/18 = .6667 

3 3 3 3 2 2 2 2 3 3 
 
 
Fig. 18 – Example of the multiple resolution method for a scene of size 10 x 10 and 

               with four classes. In this example, k=0.1 and Ft=0.84. 

     SOURCE: CONSTANZA (1989). 
 

When k is zero, all the window sizes have the same weight, whereas when k=1, only the 

bigger windows are important. According to Constanza (1989), the values of k can be 

adjusted in function of the model objective and the data quality. 
 

This multiple resolution method was implemented in a UNIX environment programme 

named FIT, developed by CSR-UFMG. FIT was applied for the best simulation results 

presented in Figure 17, with sampling window sizes of 3x3, 5x5 and 10x10 (Table 10). 

 

TABLE 10 –  TESTS OF THE MULTIPLE RESOLUTION GOODNESS OF FIT 

                        APPLIED TO THE BEST LAND USE SIMULATION RESULTS 

                        FOR THE CITY OF BAURU (1979-1988)   
  

SIMULATIONS MULTIPLE RESOLUTION GOODNESS OF FIT (F) 

S1 F = 0.902937 

S2 F = 0.896092 

S3 F = 0.901134 
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5. Conclusion 

 

The urban land use dynamics models have proved to be useful for the identification of 

main urban growth vectors and their general land use tendencies, what enables local 

planning authorities to manage and reorganise (if it comes into question) city growth 

according to the environmental carrying capacity of concerned sites and to their present 

and envisaged (future investments) infrastructure availability.    
 

The urban expansion forecasts provided by such models also help local authorities in 

general, like submajors, districts administrators and municipal ministers, to establish 

investments goals in terms of technical and social infrastructure equipments, such as the 

extension of roads, the enlargement of the water supply and waste water disposal  

catchment areas, the creation of new bus lines, the construction of kindergartens, 

schools, hospitals and health centres, etc. 

 

Decision makers from the private sphere can as well benefit from the modelling output 

data, since companies of transportation, conventional and mobile phones, cable TV and 

internet and others will have subsidies for defining priorities as to where and how 

intense to invest.  
 

Also the organised civil society, either through NGOs or local associations, can profit 

from the modelling forecasts in order to enhance, by legal means, demanding social 

movements for the implementation of social and technical infrastructure, since their 

requests and respective arguments shall be based on realistic short- and medium-term 

urban growth trends. 

 

Finally, it is worth reminding that the “weights of evidence” statistical method is not 

built upon rigid theories devices and does not either impose theoretical constraints to the 

modelling objects. Since this a wholly empirical approach, its applicability can be 

extended to further Brazilian and worldwide cities, provided that the minimum 

necessary sets of evidences maps are available. 
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