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ABSTRACT 
 

The swing-by maneuver uses a close approach with a celestial body to modify the velocity, energy 
and angular momentum of a spacecraft. The literature has several papers studying this problem, 
usually using a patched-conic approximation. In the present paper the swing-by maneuvers are 
studied and classified under the model given by the three-dimensional restricted three-body problem. 
To show the results, the orbits of the spacecraft are classified in four groups: elliptic direct, elliptic 
retrograde, hyperbolic direct and hyperbolic retrograde. Then, the modification in the orbit of the 
spacecraft due to the close approach is shown in plots that specify from which group of orbits the 
spacecraft is coming and to which group it is going. The results generated here are used to solve 
optimal problems, such as finding trajectories that satisfy some given constraints (such as achieving 
an escape or a capture) with some parameters being extremized (position, velocity, etc...). Three 
optimal problems are solved in this paper to show this application. 
 
 

INTRODUCTION 
 

The most usual approach to study this problem is to divide the problem in three phases dominated by 
the “two-body” celestial mechanics. Applications of this problem can be found in Swenson, 1992; 
Weinstein, 1992; Farquhar and Dunham, 1981; Farquhar, Muhonen e Church, 1985. Other models 
used to study this problem are the circular restricted three-body problem (like in Broucke (1988), 
Broucke and Prado (1993), and Prado (1993)) and the elliptic restricted three-body problem (Prado, 
1997). In the present paper the swing-by maneuvers are studied and classified under the model given 
by the three-dimensional circular restricted three-body problem. The goal is to simulate a large 
variety of initial conditions for those orbits and classify them according to the effects caused by the 
close approach in the orbit of the spacecraft. This swing-by is assumed to be performed around the 
secondary body of the system. For a large number of values of these three variables, the equations of 
motion are integrated numerically forward and backward in time, until the spacecraft is at a distance 
that can be considered far enough from M2. It is necessary to integrate in both directions of time 
because the set of initial conditions used gives information about the spacecraft exactly at the 
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moment of the closest approach. At these two points, the effect of M2 can be neglected and the 
system formed by M1 and the spacecraft can be considered a two-body system. At these two points, 
two-body celestial mechanics formulas are valid to compute the energy and the angular momentum 
before and after the close approach. With those results, the orbits are classified in four categories: 
elliptic direct (negative energy and positive angular momentum), elliptic retrograde (negative energy 
and angular momentum), hyperbolic direct (positive energy and angular momentum) and hyperbolic 
retrograde (positive energy and negative angular momentum). Then, the problem is to identify the 
category of the orbit of the spacecraft before and after the close encounter with M2. After that, those 
results are used to identify up to sixteen classes of transfers, accordingly to the changes in the 
category of the orbit caused by the close encounter. They are named with the first sixteen letters of 
the alphabet. After that, several optimal problems involving this maneuver can be formulated and 
solved with the help of the plots shown. Some examples include finding specific types of orbits 
(escape, capture, etc.) that have maximum or minimum velocity at periapsis (or any other 
parameters, such as the distance of the periapsis or the angle of approach).  

 
 

THE SWING-BY IN THREE DIMENSIONS 
 
This maneuver can be identified by four independent parameters: i) Vp, the magnitude of the velocity 
of the spacecraft at periapsis. For the most general case, it would be necessary to give an information 
about the direction of the velocity. In this paper, only velocities parallel to the x-y plane are 
considered except for a section in the end of the paper that generalizes this initial condition. This 
constraint is assumed, because it is the most usual situation in interplanetary research, since the 
planets have orbits that are almost coplanar. Under this approximation, and taking into account that 
the velocity at periapse is perpendicular to the periapsis vector, the information about the magnitude 
of the velocity is enough to completely specify the velocity vector; ii) Rp, the distance between the 
spacecraft and the celestial body during the closest approach; iii) α, the angle between the projection 
of the periapsis line in the x-y plane and the line that connects the two primaries; iv) β, the angle 
between the periapsis line and the x-y plane. Fig. 1 shows the sequence for this maneuver and some 
of those and other important variables.  
 
It is assumed that the system has three bodies: a primary (M1) and a secondary (M2) body with finite 
masses that are in circular orbits around their common center of mass and a third body with 
negligible mass (the spacecraft) that has its motion governed by the two other bodies. The spacecraft 
leaves the point A, passes by the point P (the periapsis of the trajectory of the spacecraft in its orbit 
around M2) and goes to the point B. The points A and B are chosen in a such way that the influence 
of M2 at those two points can be neglected and, consequently, the energy can be assumed to remain 
constant after B and before A (the system follows the two-body celestial mechanics). The initial 
conditions are clearly identified in the Fig.1: the periapsis distance Rp (distance measured between 
the point P and the center of M2), the angles α and β and the velocity Vp. The distance Rp is not to 
scale, to make the figure easier to understand. The result of this maneuver is a change in velocity, 
energy and angular momentum in the keplerian orbit of the spacecraft around the central body.  
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Fig. 1 - The Swing-By in the Three-Dimensional Space. 
 

 
THE THREE-DIMENSIONAL CIRCULAR RESTRICTED PROBLEM 

 
For the research performed in this paper, the equations of motion for the spacecraft are assumed to be 
the ones valid for the well-known three-dimensional restricted circular three-body problem. The 
standard dimensionless canonical system of units is used, which implies that: the unit of distance is 
the distance between M1 and M2; the mean angular velocity (ω) of the motion of M1 and M2 is 
assumed to be one; the mass of the smaller primary (M2) is given by µ = ( )212 mmm +  (where m1 
and m2 are the real masses of M1 and M2, respectively) and the mass of M2 is (1-µ); the unit of time 
is defined such that the period of the motion of the two primaries is 2π and the gravitational constant 
is one. There are several systems of reference that can be used to describe the three-dimensional 
restricted three-body problem (Szebehely, 1967). In this paper the rotating system is used. In this 
system of reference, the origin is the center of mass of the two massive primaries. The horizontal axis 
(x) is the line that connects the two primaries at any time. It rotates with a variable angular velocity 
in a such way that the two massive primaries are always on this axis. The vertical axis (y) is 
perpendicular to the (x) axis. In this system, the positions of the primaries are: µ−=1x , µ−= 12x , 

021 == yy . In this system, the equations of motion for the massless particle are (Szebehely, 1967): 
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where r1 and r2 are the distances from M1 and M2. 
 
 

ALGORITHM TO SOLVE THE PROBLEM 
 

A numerical algorithm to solve the problem has the following steps: 1. Arbitrary values for the three 
parameters Rp, Vp, α and β are given; 2. With these values the initial conditions in the rotating 
system are computed. The initial position is the point (Xi, Yi, Zi) and the initial velocity is (VXi, VYi, 
VZi), where: 
 

( ) ( )αβµ coscos1 pi RX +−=         (4) 
( ) ( )αβ sinRY pi cos=           (5) 
( )βsinRZ pi =           (6) 
( ) ( ) ( )αβα sinRsinVV ppXi cos+−=         (7) 
( ) ( ) ( )αβα coscoscos ppYi RVV −=         (8) 

0=ZiV            (9) 
 

where the last equation comes from the decision of studying the maneuvers with Vp parallel to the 
orbital plane of the primaries; 3. With these initial conditions, the equations of motion are integrated 
forward in time until the distance between M2 and the spacecraft is larger than a specified limit d. At 
this point the numerical integration is stopped and the energy (E+) and the angular momentum (C+) 
after the encounter are calculated; 4. Then, the particle goes back to its initial conditions at the point 
P, and the equations of motion are integrated backward in time, until the distance d is reached again. 
Then the energy (E-) and the angular momentum (C-) before the encounter are calculated. 
 
For all of the simulations shown, a Runge-Kutta of 8th order was used for numerical integration. The 
criteria to stop numerical integration is the distance between the spacecraft and M2. When this 
distance reaches the value d = 0.5 (half of the semimajor axis of the two primaries) the numerical 
integration is stopped. The value 0.5 is larger than the sphere of influence of M2, which avoids any 
important effects of M2 at these points. Simulations using larger values for this distance were 
performed, and it increased the integration time, but did not significantly change the results. To study 
the effects of numerical accuracy, several cases were simulated using different integration methods 
and/or different values for the accuracy required with no effects in the results. 
 
With this algorithm available, the given initial conditions (values of Rp, Vp, α, β) are varied in any 
desired range and the effects of the close approach in the orbit of the spacecraft are studied. 
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CLASSIFICATION OF THE ORBITS 
 

The main results consist of plots that show the change of the orbit of the spacecraft, due to the close 
encounter with M2. The Earth-Moon, Sun-Uranus and the Sun-Saturn systems of primaries are used. 
Any mission using a swing-by with one of those system can use those results. First of all, it is 
necessary to classify all the close encounters between M2 and the spacecraft, according to the change 
obtained in the orbit of the spacecraft. The letters A-P are used for this classification. They are 
assigned to the orbits according to the rules showed in Table 1. 
 

Table 1: Rules to Assign Letters to Orbits 
                        After: 

 
Before: 

Direct  
Ellipse 

Retrograde 
Ellipse 

Direct  
Hyperbola 

Retrograde 
Hyperbola 

Direct  Ellipse A E I M 
Retrograde Ellipse  B F J N 
Direct Hyperbola C G K O 
Retrograde Hyperbola D H L P 

 
With those rules defined, the results consist of assigning one of those letters to a position in a two-
dimensional diagram that has the angle α (in degrees) in the vertical axis and the angle β (in degrees) 
in the horizontal axis. One plot is made for every value of Rp and Vp. This type of diagram is called 
here a “letter-plot” and it was used before in Broucke, 1988. 
 
In the present paper several simulations were made and they are shown in Figs. 2-4. For each plot a 
total of 961 trajectories were generated, dividing each axis in 31 segments. The interval plotted for α 
is 180 < α < 360 deg because there is a symmetry with respect to the vertical line α = 180 deg. The 
plot for the interval 0 < α < 180 deg is a mirror image of the region 180 < α < 360 deg with the 
following letter substitutions: L becomes O, N becomes H, I becomes C, B becomes E, M becomes 
D and J becomes G. The letters K, P, F and A remain unchanged.  
 
By examining Figs. 2-4 it is possible to identify the following families of orbits: a) Orbits that result 
in an escape (transfer from elliptic to hyperbolic), that are represented by the letters I, J, M, N and 
that appear between the center (α = 270°) and the bottom part of some of the plots (the ones for 
lower velocities); b) Orbits that result in a capture (transfer from hyperbolic to elliptic), that are 
represented by the letters C, D, G, H that do not appear in the plots shown in this paper (but exist in 
the symmetric part not shown here); c) Elliptic orbits (transfer from elliptic to elliptic), that are 
represented by the letters A, B, E, F and that appear at the bottom of some of the plots (the ones for 
lower velocities); d) Hyperbolic orbits (transfer from hyperbolic to hyperbolic), that are represented 
by the letters K, L, O, P and that appears at the upper part of the plots and that are the only families 
available for higher velocities; e) Orbits that change the direction of motion from direct to retrograde 
that are represented by the letters E, M, G, O and that do not appear in the plots shown in this paper 
(but exist in the symmetric part not shown here); f) Orbits that change the direction of motion from 
retrograde to direct, that are represented by the letters B, D, J, L, that appear in the lower-center of 
the plot; g) Retrograde orbits that are represented by the letters F, H, N, P that appear in the majority 
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of the bottom part of the plots; h) Direct orbits that are represented by the letters A, C, I, K that 
appear in the top of the plots. 
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Fig. 2 - Simulations for Rp = 0.00008464 in the Sun–Saturn System. 
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(continue) 

Fig. 3 - Simulations in the Earth-Moon System. 
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Fig. 3 - Simulations in the Earth-Moon System. 
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Fig. 3 (Conclusion)- Simulations in the Earth-Moon System. 
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Fig.4 - Simulations for Rp = 0.000082 in the Sun-Uranus System. 
 

The borderlines between those families are also interesting families of orbits. The borders that 
separate elliptic from hyperbolic orbits are made by parabolic orbits. Examples of borders that have 
parabolic orbits after the close approach are: A-I, B-J, F-N, F-J, F-P. Examples of borders that have 
parabolic orbits before the close approach are: I-K, J-L, N-P, K-A, K-J, F-P. It is interesting to see 
that there is a border that is made by parabolic orbits before and after the close approach. It is the 
border P-F, that appears, for example, in the case Rp = 0.000082 in the Sun-Uranus System and Vp = 
2.5 (Fig. 4). The borders that separate direct from retrograde orbits are made of orbits with zero 
angular momentum. It means that the vectors position and velocity are parallel (rectilinear orbits). 
Examples of borders that have zero angular momentum after the close approach are: F-B, N-J, L-P, 
P-K, N-L, F-A. Examples of borders that have zero angular momentum before the close approach 
are: K-L, I-J, A-B, K-P, K-J. Following those examples it is easy to see those families looking at the 
figures. 
 
Some other important points to note in the figures are: i) regions where α > 270º are dominated by 
the family K in all cases (hyperbolic orbits), while regions where α < 270º accommodate a large 
variety of families; ii) for a fixed value of Rp the increase of the velocity reduces the number of 
families, that has a tendency to be formed by the families K, L and P (hyperbolic orbits) exclusively; 
iii) when Rp increases, the minimum velocity required for this to happen also increases. 
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OPTIMAL PROBLEMS 
 

The results generated in this research can be used to help mission designers to plan missions that 
involve optimization of parameters. It is possible to use the plots made here to find situations where a 
specific case (represented by the letters A-P) can be obtained with one or more variables (like Vp or 
Rp) extremized. The parameters Vp and Rp are important parameters to be extremized. If the goal of 
the mission is to collect data from M2, it is interesting to minimize Rp (to get closer to M2) and Vp (to 
stay more time close to M2). In the opposite, if M2 is necessary to be used to change the trajectory of 
the spacecraft, but it represents a risk to the vehicle due to the presence of an atmosphere and/or 
radiation, etc., it is necessary to maximize Rp and/or Vp, subject to the restriction of obtaining the 
desired change in the trajectory. To use a real case as an example, the Earth-Moon, Sun-Saturn and 
the Sun-Uranus systems are used to solve the problems described below. 
 
Problem 1: It is desired to find a trajectory of type N (a retrograde escape) in the Earth-Moon 
system, subject to the constraints Vp = 3.0 and requiring that Rp is maximized. Fig. 3 shows that the 
trajectory type N, in the case Vp = 3.0, appear for Rp = 0.00476 and Rp = 0.00675, but do not appear 
for Rp = 0.009. Fig. 5 shows plots of the sequence made to find the solution. The solution to this 
problem is Rp = 0.0075234375. The complete values for the set of variables are: α = 192º; β = 0º. 
 
Problem 2: It is desired to find a trajectory of type B (an ellipse that changes the motion from 
retrograde to direct) in the Sun-Saturn system, subject to the constraints Rp = 0.00008464 (2.0 radius 
of Saturn) and requiring that the velocity at periapsis be a maximum. Fig. 2 shows that the trajectory 
type B appears for Vp = 3.0, but do not appear for Vp = 3.5. To find the solution, plots were made for 
several values of Vp in this interval. Fig. 6 shows two plots of this sequence. The solution to this 
problem is Vp = 3.12, since for Vp = 3.13, B does not occur anymore. It is also possible to see that this 
problem has four solutions: α = 216º, β = -54º; α = 210º, β = -24º; α = 210º, β = 24º; α = 216º, β = 
54º. 
 
Problem 3: It is desired to obtain a trajectory of type N (a retrograde ellipse before the swing-by and 
a retrograde hyperbola after) that in the Sun-Uranus system, subject to the constraints Rp = 0.000082 
(10.0 radius of Uranus) and requiring that the velocity at periapsis be a maximum. Fig. 4 shows that 
the trajectory type N appears for Vp = 2.5, but do not appear for Vp = 3.0. To find the solution, plots 
were made for several values of Vp in  this interval. Fig. 7 shows two plots of this sequence. The 
solution to this problem is Vp = 2.62, since for Vp = 2.63, N does not occur anymore. In this example, 
we can see that there is a range of values of β that allows solutions. So, the complete values for the 
set of variables are: -48º ≤ β ≤ 48º; α = + 186º. 

 
This information constitutes a set of initial conditions to design the trajectory. Several improvements 
can be made: 1) more plots can be generated to get more accuracy for the data, in particular in the 
solutions of the optimal problems; 2) many other types of optimization problems can be solved, 
combining different constraints and/or variables to be extremized; 3) others systems can be used; etc. 
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Fig 5. Solution for the Problem 1 in the Earth-Moon System. 
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Fig. 6 - Solution for the Problem 2 (Rp = 0.00008464) in the Sun-Saturn System. 
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Fig.7 – Solution for the Problem 3 for Rp = 0.000082 in the Sun-Uranus System. 

 
 

CONCLUSIONS  
 

In this paper the three-dimensional restricted three-body problem is described and used to study the 
swing-by maneuver. Several letter-plot type of graphics are made to represent the effect of a close 
approach in the orbit of a spacecraft. In particular, the effects of the third dimension in this maneuver 
are studied. It is shown that the hyperbolic orbits (family K) dominate the region where α > 270º and 
that when the velocity increases, the families K, L and P dominate the plots. Families with 
particularities, like parabolic or zero angular momentum orbits, are shown to exist in the borders 
between the main families. After that, the results available here were used in the solution of optimal 
problems. In this type of problem, it is necessary to find the initial conditions that generates a given 
orbit change, subject to the extremization of some parameters like Vp or Rp. 
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