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ABSTRACT 
 

This paper has the goal of studying the problem of orbital transfers between Halo orbits and the 
primaries in the Earth–Moon system. Halo orbits are special three-dimensional trajectories that 
exist around the Lagrangian points of the restricted three-body problem. These orbits are studied 
in several papers, since they have important applications in astronautics. The first step involved in 
this research is to perform the determination of the Halo orbits. To do that, an analytic calculation 
is performed using the Linstedt-Poincaré method. The present paper considers that a maneuver 
will be performed to transfer the spacecraft from an initial orbit around the Earth to insert the 
spacecraft in a Halo orbit, and then from the Halo, to the Moon. Transfers between two Halo 
orbits are also considered. After that, the return trajectories from the Moon to the Earth passing by 
the Halo are also studied. The control that will be used to achieve that goal is constituted by a 
series of instantaneous change in the velocity of the spacecraft. A numerical algorithm based in 
the Lambert Problem is built to calculate the transfer orbits. This maneuver is required when it is 
desired to use the Halo as a parking orbit to transfer a spacecraft between the Earth and the Moon. 
 
 
 

INTRODUCTION 
 

To study the problem of transfer orbits between Halo orbits and the primaries, the restricted three-
body problem in three dimensions is used as the mathematical model. It is assumed that the total 
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system (Earth + Sun + spacecraft) satisfies the hypotheses: i) all the bodies are point masses; ii) 
the Earth and the Sun are in circular orbits around their mutual center of mass. Then, the goal is to 
study the motion of the spacecraft governed by these two masses. The Halo orbits are trajectories 
that exist around the Lagrangian points, that are the well-known equilibrium points that appear in 
the rotating frame of the circular restricted three-body problem (e. g. Szebehely, 1967). They are 
very important for astronautical applications. Since they are five points of equilibrium in the 
equations of motion, it means that a particle located at one of those points with zero relative 
velocity will remain there indefinitely. The collinear points (L1, L2 and L3) are always unstable 
and the triangular points (L4 and L5) are stable in the present case (Earth-Moon system). They are 
all very good points to locate a space station due to the low cost of the station keeping. The 
triangular points are especially good for this purpose, since they are stable equilibrium points. In 
the nomenclature used in this paper, L1 is the collinear Lagrangian point that exists between the 
Earth and the Moon. It is located about 58000 km from the Moon. L2 is the collinear Lagrangian 
point that exists behind the Moon. It is located about 64500 km from the Moon. 
 

There are many papers in the literature that refers to Halo orbits. In a general form, it is 
possible to divide them in three groups: 

 
1) Papers that concentrate on the determination of the orbits, like: Farquhar (1972), 

Farquhar and Kamel (1973), Farquhar et al (1977), Breakwell and Brown (1979), Richardson 
(1980a, 1980b and 1980c), Howell and Breakwell (1984), Popescu (1986), Farquhar (1991), 
Popescu and Cardos (1995), Felipe et al (2000). These papers describe the Halo orbits and show 
approximate analytical solutions, that can later be used as a starting point to find accurate 
numerical orbits; 
 

2) Papers that consider the problem of transferring the spacecraft between a parking orbit 
around the Earth and a Halo orbit. Among these, we can mention, D’Amario and Edelbaum 
(1974), Stalos et al (1993), Howell et al (1994), Starchville and Melton (1997); 
 

3) A third line of research studies maneuvers between Halo orbits. Some good samples are: 
Farquhar et al. (1980), Farquhar (1980), Popescu (1985), Simó (1987), Howell and Gordon 
(1992), Hiday and Howell (1992), Gordon and Howell (1992), Howell and Pernicka (1993). In 
this category it is also possible to include some papers that consider the Rendezvous between two 
spacecrafts, like: Jones and Bishop (1993a, 1993b, 1994). A excellent compilation of the results 
combining all the topics are available in four volumes in Gómez et al (2001a, 2001b, 2001c, 
2001d). 

 
 

THE RESTRICTED THREE-DIMENSIONAL THREE-BODY PROBLEM 
 
The model used in this paper is the well-known circular restricted three-body problem. This 
model assumes that two main bodies (M1 and M2) are orbiting their common center of mass in 
circular Keplerian orbits and a third body (M3), with negligible mass, is orbiting these two 
primaries. The motion of M3 is supposed to be affected by both primaries, but it does not affect 
their motion (Szebehely, 1967). The canonical system of units are used, and it implies that: i) The 
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unit of distance is the distance between M1 and M2; ii) The angular velocity () of the motion of 

M1 and M2 is assumed to be one; iii) The mass of the smaller primary (M2) is given by  = 

 212 mmm   (where m1 and m2 are the real masses of M1 and M2, respectively) and the mass of 

M1 is (1-), so the total mass of the system is one; iv) The unit of time is defined such that the 

period of the motion of the primaries is 2; v) The gravitational constant is one.  
 
There are several systems of reference that can be used to describe the three-dimensional 
restricted three-body problem (see Szebehely, 1967). In this paper the rotating system is used. In 
the rotating system of reference, the origin is the center of mass of the two massive primaries. The 
horizontal axis (x) is the line that connects the two primaries at any time. It rotates with an angular 
velocity  in such way that the two massive primaries are always on this axis. The vertical axis 
(y) is perpendicular to the (x) axis and lies in the plane of movement. In this system, the positions 
of the primaries are: 1x , 1x2 , 0yy 21  . In this system, the equations of motion for 
the massless particle are (Szebehely, 1967): 
 

 
3
2

3
1 r

1x

r

x
1xy2x





         (1) 

 
3
2

3
1 r

y

r

y
1yx2y           (2) 

 
3
2

3
1 r

z

r

z
1z            (3) 

 
where r1 and r2 are the distances from M1 and M2, given by  
 

  2222
1 zyxr           (4) 

  2222
2 zy1xr           (5) 

 
 

THE HALO ORBITS 
 
The Halo orbits are periodic orbits in the three-dimensional restricted three-body problem in the 
neighborhood of the collinear Lagrangian points (e. g. Breakwell and Brown, 1979). Fig. (1) 
shows a schematic view of those orbits and the geometry of the proposed mission. Those transfers 
are required to make possible orbital maneuvers for space missions. To perform this task, it is 
necessary to look at the characteristics of the Halo orbits and explore the non-linear system. To 
determine those orbits, a possible approach is to find an analytical approximation for the family of 
periodic orbits by using the Linstedt-Poincaré method, which allows us to obtain one solution, in a 
series form, until a very high order. As a reference orbit it is possible to use the linear solution. 
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Figure 1. Geometry of the problem (detailed explanation will be show later in this paper). 
 

The basic idea of this method is to use the non-linear part of the differential equations written as a 
Legendre polynomial (Richardson, 1980b). The solution of the linear approximation can be 
written as: 
 

}tiexp{Bz      };tiexp{KAy      };tiexp{Ax ooo                                       (6) 

 
where  are the fundamental frequencies in the plane and perpendicular to the plane; A, B are 
the amplitudes (in complex notation) in the x and z axis, respectively, and K is the relation 
between the amplitudes in the x and y axis. After that, we know that when the non-linear terms of 
the differential equations are included in the variational equations. The general solution will 
depend on the linear solution in the plane and in the z axis. In this case the motions are no longer 
separable. Thas, it is possible to write the general solution as a Fourier series of the type 
 

 
l,k,j,i

ji
l,k,j,i t}lkexp{BAXx                                                                                (7)  

 
where Xi,j,k,l

 are complex coefficients. The same is true for the variables y and z. Their 
determination is made by replacing the proposed solutions in the differential equations, 
identifying the terms of the same harmonic and power and solving the algebraic equations left. 
The new frequencies can be determined as a power series in the amplitudes 
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where   are the frequencies of the linear system. In this way, it is possible to determine 
periodic orbits if we request that ω and ν be both equal (i.e.  = ). 
Following this determination, it is possible to perform the validation of the solution found by this 
method, using numerical integration of the restricted three-body problem with the initial condition 
found by the analytical method.  
 
After finding a set of initial conditions (x, y, z, Vx, Vy, Vz) that allows the spacecraft to enter in an 
orbit around the Lagrangian point, it is possible to use the Lambert Problem approach in the 
restricted three-body problem, (which is described below) to find the orbital transfers. It is 
necessary to choose two points that belong to two different Halo orbits and vary the time of flight 
involved. 
 
 

THE LAMBERT'S THREE-BODY PROBLEM 
 
The problem that is considered in the present paper is that of finding trajectories to travel between 
two fixed points in the rotating frame, that belong to two different Halo orbits. Since those points 
are in known positions, this problem can be formulated as:  
 
"Find an orbit (in the three-body problem context) that makes a spacecraft leave a given point A 
and go to another given point B". It is the TPBVP (two point boundary value problem). There are 
many orbits that satisfy this requirement, and the way used in this paper to find families of 
solutions is to specify a time of flight for the transfer. Then, the problem becomes the Lambert's 
three-body problem, that can be formulated as: 
 
"Find an orbit (in the three-body problem context) that makes a spacecraft leave a given point A 
and go to another given point B, arriving there in a specified time of flight". Then, by varying the 
specified time of flight it is possible to find a whole family of transfer orbits and study them in 
terms of the requiredV. This technique was used before in Prado (1993) and Prado and Broucke 
(1996). 
 
To solve this problem to follow the steps: 
 
i) Guess a initial velocity, together with the initial prescribed position, the complete initial state is 
known; 
ii) Integrate numerically the equations of motion for a specified transfer time; 
iii) Check the final position obtained from the numerical integration with the prescribed final 
position. If there is an agreement (difference less than a specified error allowed) the solution is 
found and the process can stop here. If there is no agreement, an increment in the initial guessed 
velocity is made and the process goes back to step ii). 
 
The method used to find the increment in the guessed variables (initial velocity) is the standard 
gradient method, as described in Press et al, 1989. The routines available in this reference are also 
used in this research with minor modifications. 
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After this, we calculated the consumptions from the Earth for the Moon, according to the Figure 
1, in the following way: 
 

     2iz1z
2

iy1y
2

ix1x1 VtVsVtVsVtVsV       (9) 

Where: 
V1 = total impulse to insert the spacecraft in the first transfer orbit 
Vsx,y,z = x, y, z components of the velocity of the spacecraft when in orbit around the Earth at 
7000km, just before the application of the first impulse 
Vt1ix,y,z = x, y, z components of the velocity of the spacecraft when it is inserted in the trajectory 
T1, just after the application of the first impulse 
 

     2
fz1z1

2
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2
fx1x12 VtVhVtVhVtVhV      (10) 

 
Where: 
V2 = total impulse to insert the spacecraft in the Halo orbit  
Vh1x,y,z = x, y, z components of the velocity of the spacecraft when it is insert in Halo orbit, just 
before the second impulse 
Vt1fx,y,z = x, y, z components of the velocity of the spacecraft when it arrives in the Halo orbit just 
after the application of the second impulse 
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2
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2
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Where: 
V3 = total impulse to insert the spacecraft in the second transfer orbit 
Vh2x,y,z = x, y, z components of the velocity of the spacecraft when in Halo orbit in instant it is 
insert in the trajectory T2 just before the third impulse  
Vt2ix,y,z = x, y, z components of the velocity of the spacecraft in orbit T1 when it arrives in the in 
Halo orbit, just after application of the third impulse 
 

     2fz2z
2

fy2y
2

fx2x4 VtVLVtVLVtVLV       (12) 

 
Where: 
V4 = total impulse to insert the spacecraft around the Moon 
VLx,y,z = x, y, z components of the velocity of the spacecraft when in orbit around the Moon at 
1960km, just after the application of the fourth impulse  
Vt2fx,y,z = x, y, z components of the velocity of the spacecraft when in trajectory T2 in instant of 
the insert in lunar orbit, just before the application of the fourth impulse 
For the transfers between the Moon and the Earth the calculations are the same ones, considering 
the theorem of the mirror image (Miele, 1960). 
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RESULTS 
 
To simulate orbital transfers, the approach used in this paper is to make the spacecraft to leave the 
Earth’s orbit from a point located at 7000 km from the Earth and going to four points of each of 
the three Halo orbits, analyzing the consumption. Then perform the transfers from the points that 
belong to the Halo to going to a point of an orbit with 1960 km altitude from the Moon, also 
analyzing the consumption. The same procedure is used for the return from the Moon to the Earth. 
Transfers between the Halos are also considered, and for these situations, the points were chosen 
in such way that the time to travel between them is constant. The fact that the velocity of the 
spacecraft is not constant for a spacecraft in the Halo orbit, makes those points to be closer to each 
other in the regions where the velocity is lower. The number of the points in each Halo orbit can 
be increased to get a more accurate minimum cost maneuver. Then, each point of the initial orbit 
is combined with each point of the final orbit. For each pair of points, the Lambert problem is 
solved for a series of times of flight. Then, the maneuver that has the minimal fuel consumption 
for each pair is listed in a table. After all the simulations are performed, we have a table that gives 
the minimum fuel consumption maneuver for the whole transfer. Fig. (2) shows several Halo 
orbits discretized in points. From this collective view it is possible to see the three-dimensional 
character of the orbits. 
 

 
 

Table 2. Position and Velocity, in the rotating frame, for the points at the Halo Orbit 
For  = 0.001 = HALO 1 

x y z vx vy vz Point 
-0,8550346 0 1,41181571x10-4 0 0,13357503945 0 1 
-0,8446384 5,555764x10-2 5,5244823x10-7 3,5035189x10-3 1,4193513x10-2 -3,430358x10-4 2 
-0,8236527 0 -1,6185533x10-4 0 -0,1261723 0 3 
-0,8446384 -5,555764x10-2 5,5244823x10-7 -3,5035189x10-2 1,4193513x10-2 3,430358210-4 4 

 
For= 0.05 = HALO 2 

x y z vx vy vz Point 
-0,855364 0 7,0536659x10-3 0 0,13499743 0 a 
-0,8448171 5,6101007x10-2 1,6340096x10-5 3,5429034x10-2 1,4204071x10-2 -1,7149859x10-2 b 
-0,8236527 0 -7,0536659x10-3 0 -0,13499743 0 c 
-0,8446384 -5,6101007x10-2 1,6340096x10-5 -3,5429034x10-2 1,4204071x10-2 1,7149859x10-2 d 

 
For= 0.1 = HALO 3 

x y z vx vy vz Point 
-0,856353 0 1,4075205x10-2 0 0,13919989 0 e 
-0,845349 5,7701918x10-2 -3,4341665x10-5 3,659545x10-2 -1,422379x10-2 -3,428782x10-2 f 
-0,823642 0 -1,623469x10-2 0 -0,13044728 0 g 
-0,845349 -5,7701918x10-2 3,4341665x10-2 -3,659545x10-2 1,422379x10-2 3,4287826x10-2 h 

 



Advances in Space Dynamics 3: Applications in Astronautics 

 

233 
 

A B

C

E

D

F

G

H

1
2

4 3 Halo 1
Halo 2
Halo 3

 
Figure 2. Halo orbits showing the points for the transfers. 

 
For this first study, three different Halo orbits were generated with the Linstedt-Poincaré method. 
They all belong to the same family around the Lagrangian point L1. The difference between them 
can be expressed by a single parameter, usually the parameter B, that represents the linear 
amplitude in the z axis. In terms of this parameter, the orbits used in this research are: 0.001, 0.05, 
and 0.100. Table 2 shows the position and velocity, in the rotating frame, for the eight points in 
which the orbits were divided and for all three orbits. This table also defines the notation used for 
the points.  
 
Table 3 shows the consumption referent to transfers between the three Halo orbits. Table 4 show 
the consumption between a point in an orbit around the Earth with 7000 km altitude with the 
points of the Halos. Table 5 show the consumption between the Halo orbits and a point in an orbit 
with 1960 km altitude around of the Moon. The shaded lines represent the minimum 
consumptions between each orbit. 
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From 1 to: t v 

a 1.03 0.262335939 
b 0.63 0.017876695 
c 1.24 0.155990324 
d 0.82 0.263937248 

From 1 to: t v 
e 0.85 0.273686580 
f 0.64 0.038318047 
g 1.09 0.200032945 
h 0.82 0.281566522 

From 2 to: t v 
a 2.82 0.263582076 
b 0.65 0.082047226 
c 0.75 0.018003250 
d 1.46 0.028360674 

From 2 to: t v 
e 0.82 0.280662052 
f 1.32 0.100379785 
g 0.74 0.038510893 
h 1.41 0.061007929 

From 3 to: t v 
a 1.24 0.151801072 
b 0.77 0.250639137 
c 1.08 0.243324808 
d 0.75 0.017946231 

From 3 to: t v 
e 1.11 0.193891663 
f 0.78 0.267202718 
g 0.91 0.253167559 
h 0.75 0.038420914 

From 4 to: t v 
a 0.62 0.017919696 
b 1.25 0.017584640 
c 0.77 0.251301416 
d 0.75 0.083913889 

From 4 to: t v 
e 0.62 0.038531253 
f 1.26 0.042885454 
g 2.39 1.046032490 
h 1.41 0.103938115 

From a to: t v 
1 1.03 0.262335934 
2 0.62 0.017919671 
3 1.24 0.151801055 
4 0.82 0.263582007 

From b to: t v 
1 0.82 0.263937309 
2 0.75 0.083915128 
3 0.75 0.017946219 
4 1.5 0.029042611 

 

 
From c to: T v 

1 1.24 0.155990325 
2 0.77 0.251301407 
3 1.08 0.243324804 
4 0.745 0.017946655 

From d to: t v 
1 0.63 0.017876647 
2 1.25 0.017584569 
3 0.77 0.250639145 
4 0.65 0.082046492 

From e to: t v 
1 0.85 0.273686570 
2 0.62 0.038531233 
3 1.11 0.193891638 
4 0.82 0.280661992 

From f to: t v 
1 0.82 0.281566563 
2 1.41 0.103938697 
3 0.75 0.038420900 
4 1.41 0.061007747 

From g to: t v 
1 1.09 0.200032932 
2 0.77 0.268996540 
3 0.91 0.253167554 
4 0.74 0.038510888 

From h to: t v 
1 0.64 0.038318003 
2 1.26 0.042885496 
3 0.78 0.267202707 
4 1.32 0.100379591 

From a to: t v 
e 0.58 0.278320163 
f 0.63 0.020512544 
g 1.24 0.162766349 
h 0.81 0.297647138 

From b to: t v 
e 0.81 0.297181476 
f 0.113 0.100965826 
g 0.75 0.020568875 
h 1.43 0.062083624 

From c to: t v 
e 1.25 0.150105086 
f 0.78 0.284484391 
g 0.71 0.257150758 
h 0.75 0.020511338 

From d to: t v 
e 0.62 0.020549726 
f 1.26 0.050864102 
g 0.77 0.285457143 
h 0.123 0.104397009 

Table 3 – Transfers between Halo orbits 
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Table 4 – Transfers between the Earth and  
the Halo orbits 

 
 
From Earth to: t v 

1 0.50 4.708563921 
2 0.51 4.680172369 
3 3.13 14.050712468 
4 0.47 4.863093722 
a 0.50 4.711744533 
b 0.51 4.679886429 
c 0.48 4.834240523 
d 0.47 4.864458074 
e 0.50 4.721216335 
f 0.51 4.679101019 
g 0.48 4.852447869 
h 0.47 4.868509170 

 
 
 

Table 5 – Transfers between the Halo orbits 
and the Moon 

 
To Moon from: t v 

1 2.61 3.650079659 
2 3.06 3.532641386 
3 2.45 3.475038607 
4 2.63 3.558500329 
a 2.59 3.648711924 
b 2.43 3.542211996 
c 2.39 3.485044319 
d 2.67 3.549355841 
e 2.56 3.647806028 
f 2.45 3.526158372 
g 2.35 3.486904404 
h 2.63 3.542687700 

 
 

 
 

CONCLUSIONS 
 
The algorithm developed in this paper, that uses the "Lambert Method" for the calculation of 
orbital maneuvers with minimum consumption of fuel and limit in time for the transfer, was used 
for a complete transfer between the Earth and the Moon, going from an Halo orbit around the 
intermediate lagrangian point. The method was shown to be efficient and several transfers 
trajectories were generated. The same method was applied for the calculation of transfers between 
two Halo orbits. In all situations it was possible to identify transfers with minimum cost, 
indicating the initial and final points of each maneuver, as well as the magnitude and direction of 
the necessary impulses to complete it. 
 
 

ACKNOWLEDGMENT 
 

The authors are grateful to the Foundation to Support Research in the São Paulo State (FAPESP) 
for the research grants received under Contracts 2000/14769-4, 2000/7074-0 and 1999/08740-4 
and to CNPq (National Council for Scientific and Technological Development) - Brazil for the 
contract 300221/95-9. 

 

 

REFERENCES 

 
Breakwell, J. V., and Brown, J. V., 1979, The Halo Family of 3-Dimensional Periodic Orbits in 

the Earth-Moon Restricted 3-Body Problem, Celestial Mechanics, vol. 20, pp. 389-404. 

D’Amario, L. D. D., and Edelbaum, T. N., 1974, Minimum impulse three body trajectories, AIAA 
Journal, vol. 12, 455-462. 



Advances in Space Dynamics 3: Applications in Astronautics 

 

227 
 

Farquhar, R. W. and Kamel, A. A., 1973, Quasi-periodic orbits about the transfer libration point, 
Celestial Mechanics, vol. 7, pp. 458-474. 

Farquhar, R. W., 1972, A Halo-Orbit Lunar Station, Astronautics and Aeronautics, pp. 59-63. 

Farquhar, R. W., 1980, Trajectories and orbital maneuvers for the first libration-point satellite, 
Journal of Guidance, Control and Dynamics, vol. 3, pp. 549-554. 

Farquhar, R. W., 1991, Halo-Orbit and Lunar-Swingby Missions of the 1990’s, Acta 
Astronautica, vol. 24, 1991, pp. 227-234. 

Farquhar, R. W., Muhonen, D. P., and Richardson, D. L., 1977, Mission Design for a Halo Orbiter 
of the Earth, Journal of Spacecraft and Rockets, vol. 14, n. 13, pp. 170-177. 

Farquhar, R. W., Muhonen, D. P., Newman, C. and Heuberger, H., 1980, Trajectories and orbital 
Maneuvers for the first Libration Point Satellite, Journal of Guidance, Control and Dynamics, 
vol. 3, n. 6, pp. 549-554. 

Felipe G., Beaugé C., Prado A. F. B. A., 2000, “Determinação Analítica de Órbitas do Tipo 
Halo”, Boletim da Sociedade Astronômica Brasileira, Vol. 20, No 1.  

Gómez G., Llibre J., Martínez R., Simó C., 2001a, “Dynamics and Mission Design Near Libration 
Points”, Vol. 1, Fundamentals: The Case of Collinear Libration Points, World Scientific. 

Gómez G., Llibre J., Martínez R., Simó C., 2001b, “Dynamics and Mission Design Near Libration 
Points”, Vol. 2, Fundamentals: The Case of Triangular Libration Points, World Scientific. 

Gómez G, Simó C., Jorba À., Masdemont J., 2001c, “Dynamics and Mission Design Near 
Libration Points”, Vol. 3, Fundamentals: Advanced Methods for Collinear Points, World 
Scientific. 

Gómez G, Simó C., Jorba À., Masdemont J., 2001d, “Dynamics and Mission Design Near 
Libration Points”, Vol. 4, Fundamentals: Advanced Methods for Triangular Points, World 
Scientific. 

Gordon, S. C., and Howell, K. C., 1992, Orbit Determination Error Analysis and Comparison of 
Station-Keeping Costs for Lissajous and Halo-Type Libration Point orbits, Advances in 
Astronautical Sciences, vol. 79, Part. I, 1992, pp. 117-136. 

Hiday, L. A., Howell, K. C., 1992, Transfers between libration-point orbits in the elliptic 
restricted problem. AAS/AIAA Spaceflight Mechanics Meeting, paper AAS 92-126, 
Colorado. 

Howell, K. C, and Gordon, S. C., 1992, Orbit Determination Error Analysis and Station Keeping 
Strategy for Sun-Earth L1 Libration Point Orbits, School of Aeronautics and Astronautics, 
Purdue University, West Lafayette, Indiana. 

Howell, K. C, and Pernicka, H. J., 1993, Station Keeping Method for Libration Point Trajectories, 
Journal of Guidance, Control, and Dynamics, vol. 16, n. 1, pp. 151-159. 

Howell, K. C. and Breakwell, J. V., 1984, Almost Rectilinear Halo Orbits, Celestial Mechanics, 
vol. 32, pp. 29-52. 

Howell, K. C., Mains, D. L., and Barden B. T., 1994, Transfer Trajectories de Earth Parking 
Orbits to Sun-Earth Halo Orbits, AAS paper 94-160, AAS/AIAA Spacefligtht Mechanics 
Meeting, Cocoa Beach, FL, February 14-16. 



Advances in Space Dynamics 3: Applications in Astronautics 

 

228 
 

Jones, B. L., and Bishop, R. H., 1993a, H2 Optimal Halo Orbit Guidance, Journal of Guidance, 
Control, and Dynamics, vol. 16, n.6, pp. 1118-1124. 

Jones, B. L., and Bishop, R. H., 1993b, Stable Orbit Rendezvous for a Small Radius Translunar 
Halo Orbit, Advances in Astronautical Sciences, vol. 82, Part. I, pp. 585-604. 

Jones, B. L., and Bishop, R. H., 1994, Rendezvous Targeting and Navigation for a Translunar 
Halo Orbit, Journal of Guidance, Control and Dynamics, vol. 17, n. 5, pp. 1109-1114, 
September-October. 

Mieli, A., 1960, Theorem of image trajectories in the Earth-Moon space. In: International 
Astronautical Congress, Stockholm, Sweden, pp. 225-232. 

Popescu, M. and Cardos, V., 1995, The Domain of initial Conditions for the Class of three-
dimensional Halo Periodical Orbits, Acta Astronautical, vol. 36, n.4, pp. 193-196. 

Popescu, M., 1985, Optimal transfer from Lagrangian points, Acta Astronautica, vol. 12, pp. 225-
228. 

Popescu, M., 1986, Auxiliary problem concerning optimal pursuit on Lagrangian orbits, Journal 
of Guidance, Control and Dynamics, vol. 9, pp. 717-719. 

Prado, A.F.B.A. Optimal Transfer and Swing-By Orbits in the Two- and Three-Body Problems, 
Austin, 240p. Thesis (Ph.D.) - Dept. of Aerospace Engineering and Engineering Mechanics, 
University of Texas, Dec. 1993. 

Prado, A.F.B.A. and Broucke, R.A. The Minimum Delta-v Lambert’s Problem. SBA Controle &       
Automação, Vol. 7, Nº 2, pp. 84-90, May/Aug. 1996,  

Press, W. H.; Flannery, B. P.; Teukolsky S. A. and Vetterling, W. T., 1989, Numerical Recipes, 
Cambridge University Press, NewYork. 

Richardson, D. L., 1980a, A note on a Lagrangian formulation for motion about the collinear 
points, Celestial Mechanics, vol. 22, pp. 231-236. 

Richardson, D. L., 1980b, Analytic Construction of periodic orbits about the collinear points, 
Celestial Mechanics, vol. 22, pp. 241-253. 

Richardson, D. L., 1980c, Halo Orbit Formulation for the ISEE-3 Mission, Journal Guidance and 
Control, vol. 3, n. 6, pp. 543-548. 

Simó, C., Gómez, G., Llibre J., Martínez R. and Rodríguez J., 1987, On the Optimal Station 
Keeping Control of Halo Orbits, Acta Astronautica, vol. 15, n. 6/7, pp. 193-197. 

Stalos, S., Folta, D., Short, B., Jen, J., and Seacord, A., 1993, Optimum Transfer to a Large-
Amplitude Halo Orbit for the Solar and Heliospheric Observatory (SOHO) Spacecraft, paper 
n. 93-553, AAS/GSFC International Symposium on Space Flight Dynamics, April. 

Starchville, Jr. T. F., Melton, G. R., 1997, Optimal Low-Thrust Trajectories to Earth-Moon L2 
Halo Orbits (Circular Problem), AAS/AIAA Astrodynamics Specialist Conference, Sun 
Valley, Idaho, August 4-7, paper 97-714. 

Szebehely, V., 1967, Theory of Orbits, Academic Press, New York. 


