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ABSTRACT 

 
This paper presents a discussion on the effects of thrust misalignments on orbit transfers 
based on the open literature and on our researches. Despite being a topic of theoretical and 
practical importance, the open literature is poor of works that explicitly deal with it and its 
related ones. Among them, we will discuss the works of: Porcelli and Vogel, Adams and 
Melton, Rao, Howell and Gordon, Junkins et al., Junkins, Carlton-Wippern, and Alfriend. 
To add to or to clarify them, we will also discuss our researches presented in the works of 
Rodrigues, Santos-Paulo, Jesus, Rocco, and others, under the supervision of the two first 
authors of this paper. Finally, we will suggest some research directions. 

 
INTRODUCTION 

 
Most space missions need trajectory/orbit transfers to reach their goals. These trajectories/orbits are 
reached sequentially through transfers between them by changing at least one element of the vehicle 
velocity vector, or equivalently, of its keplerian elements, by firing jets, apogee motors, or other 
sources of force. These have misalignments (Figure 1) with respect to their nominal lines of action, 
caused by many unpredictable reasons like: linear and angular assembly displacements; center of 
mass-CM displacements due to movable parts like solar panels, antennas, booms, tethers, etc. or fuel 
consumption, specially during the firing periods, cf. Tandon (1988); many and nonsymmetrical jets 
firing at the same time; plume impingement of some jets on the vehicle structure; errors in orbit and 
attitude determination; timing errors; etc. Schwende and Strobl (1977) mention as reasonable an 
angular misalignment  < 0.002 rad = 6.8755' for a typical apogee motor. Longuski, Kia & 
Breckenridge (1989) present a control proposal which eliminates the damage caused by this 
misalignment during propulsive maneuvers. Their proposal consists of splitting it in two parts, 
intercalated by a time interval without propulsion. The spin stabilization is a strategy that has also 
shown very much use in apogee motors, due to the fact of canceling the torque of the transverse 
misalignment.These misalignments cause wrong forces in wrong times with resultant off the vehicle 
CM, and then, undesirable torques that turn the vehicle and the attached jets, deviating them even 
more from their nominal directions, in a positive feedback. They must be fast compensated by the 
attitude control system, or they will cause catastrophic orbit and attitude effects. Even so, they 
produce wrong orbit transfers and undesired attitude changes, that demand posterior corrections 
spending more time, fuel, on-ground evaluations, telemetry, and telecommands, delaying the mission, 
increasing its cost, and reducing its life. This paper presents a discussion on them. 
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Figure 1: The misalignments of a system in planar motion. Source: Rodrigues (1991). 
 

DISCUSSION OF SOME SIGNIFICANT WORKS 
 
The literature on trajectory/orbit transfers is abundant of significant works, as summarized in Table 1, 
adapted and extended from Rodrigues (1991). In this table, they are compared through the criteria of: 
vehicle model, external forces and torques, thrust model, system/error dynamics, solution approach, 
contribution. We can see that most of them assume punctual mass, newtonian central field, n-
impulsive thrust without torques, or misalignments, nonlinear (keplerian) system dynamics but no 
error dynamics, optimization methods, respectively. According to Souza et al. (1998), we highlight 
that: 
 
Porcelli and Vogel (1980), assumed punctual mass, Newtonian central field, noncoplanar 2-impulsive 
apogee-perigee thrust without torques but with magnitude and angle errors, nonlinear (Kepler) system 
dynamics but linearized error dynamics via covariance analysis, fixed time between the two impulses. 
They built a semi-analytic algorithm to find the orbit insertion/transfer errors from the covariance 
matrices of the source errors. They propagated the covariance matrices error sources. From the errors 
at the first and second impulses, initially given at the orbit perigee and apogee, they got the covariance 
matrix of the final orbital elements. 
 
Adams and Melton (1986) assumed punctual mass, newtonian central field, non-impulsive multiple 
finite perigee thrust without torques but with magnitude and angle errors, nonlinear (keplerian) system 
dynamics but linearized error dynamics via covariance analysis. They modeled the finite thrust as a 
sequence of n-impulses and extended the Porcelli and Vogel (1980) semi-analytic algorithm to it. 
They developed an algorithm which calculates the propagation of navigation and directional errors 
along the nominal trajectory, involving finite perigee burns. This work represented an important and 
repeated extension of the Porcelli and Vogel (1980) work, because it included finite thrusts, i.e., the 
non-impulsive hypothesis was used. These two works developed semi-analytic algorithms, using a 
covariance matrix error analysis. 
 
Rodrigues (1991) assumed nonpunctual mass, newtonian central field, non-impulsive apogee-perigee 
noncoplanar thrust with torques, with linear and angular misalignments, nonlinear (keplerian) system 
dynamics, nonlinear error dynamics due to fuel consumption and CM displacements, attitude control 
or not. He built a software to simulate the orbit and the attitude motions, to evaluate the orbital 
element errors, the fuel consumption, and the mission success or failure under fuel constraints. His 
work is unique, since it is the only one in Table 1 and in most of the open literature to explicitly and 
fully  consider: the nonpunctual dimensions and actual characteristics of an on-going  satellite project 
(the first Brazilian Remote Sensing Satellite-RSS1), the change in its center of mass position and on 
its thrust intensity due to opening solar panels and to fuel consumption, the induced torques and 
changes in the attitude motion, thrust direction, and orbital motion, under 3 types of attitude control 
system, the additional maneuvers, time/fuel spent to reach the final desired orbit, and the transfer 
success/failure to do so. 
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Figure 2 shows the agreement and the parabolic behavior for small t of the analytical and the 
numerical simulations of the CM trajectory for the system in Figure 1 with F = 10 N,  = 0.01 m,  = 
0 rad,  = 0.01 m, m = 5 kg, r = 1 m, h = 3 m, I = 5 kg.m2 , R( )0 0  m,  ( )R 0 0  m/s, ( )0 0 rad, 
 ( ) 0 0  rad/s. 

 

Figure 2: CM motion for small t of a system in planar motion. Source: Rodrigues (1991). 
 

Rodrigues (1991) showed that the CM velocity components )t(Y),t(X   have damped oscillatory 

behavior whose values converge to the interval of 12-14 m/s. And that )t(Y reaches its first 

maximum  *Y  at time t*. From his analytical solution he got the convergence values 
 X Y   12.53 m/s, t* = 12.53 s,  *Y  = 19.59 m/s, respectively. The numerical value for  *Y  is 

19.55 m/s, indicating a relative error in the analytic model less than 0.5% (for this example). It is 
interesting to note that the "ideal" value of  *Y , given by (F/m)t*, is 25.07 m/s. Thus, the application 
of the force during t* seconds assures propulsive efficiency greater than 75% in that case. 
 
Rao (1993), assumed punctual mass, actual gravitational field, nonlinear (keplerian) system dynamics 
but linearized error dynamics via covariance analysis. He built a semi-analytic theory to extend such 
analysis to long-term errors on elliptical orbits. 
 
Howell and Gordon (1994) assumed punctual mass, actual gravitational field, nonlinear (keplerian) 
system dynamics but linearized error (injection, tracking, maneuver) dynamics via covariance 
analysis, minimization of a weighted squared velocity increment. They analyzed several orbit 
determination error methods and they developed a station-keeping strategy applicable to Sun-Earth L1 
libration point orbits using impulsive forces with errors at discrete time intervals. 
Junkins et al. (1996), and Junkins (1997) in one section, assumed punctual mass, newtonian central 
field, nonlinear (keplerian) system dynamics; linearized error dynamics via covariance analysis and 
nonlinear error dynamics via numeric integration. He discussed the progressive imprecision of the 
propagation of the orbital position covariance matrix due to initial condition errors through nonlinear 
coordinate transformations. He compared the distributions of the satellite position errors: zero-mean 
gaussian covariance ellipsoids versus negative mean non-gaussian covariance "bananoids" that grow 
with time.  
 
Carlton-Wippern (1997), assumed punctual mass, Newtonian central field, first order stochastic forces 
specially drag, nonlinear system (keplerian) dynamics but perturbation error dynamics via Langevin 
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equation of Statistical Mechanics. He took expectations of the variables involved to relate their 
means, but this zeroed the stochastic forces involved. 
 
Santos-Paulo (1998) assumed punctual mass, newtonian central field, bi-impulsive noncoplanar thrust 
without torques, with magnitude and angular errors, nonlinear (keplerian) system dynamics, no error 
dynamics, fuel minimization. She built a software to simulate the orbit and to evaluate the orbital 
elements errors, the corrections needed, and the extra transfer time and velocity change as functions of 
the adopted errors, as in Tables 2 and 3. 
 
Table 2 shows the keplerian elements of the desired and of the reached final orbits, the correspondent 
extra transfer time t and extra velocity change V, the number of iterations needed N, under 
different hypotheses A, B, ..., H of magnitude error V, pitch error , or yaw error , for Case 2 
(initial orbit with a = 7500 km, e = 0, i = 10o,  = 0o,  = , f = ). Table 3 shows similar data for 
Case 7 (initial orbit with a = 7500 km, e = 0.1, i = 0o,  = 0o,  = 10o, f = ). 
 
Alfriend (1999) assumed punctual mass, newtonian central field, nonlinear (kepler) system dynamics; 
linearized error dynamics via covariance analysis and nonlinear error dynamics via numeric 
integration. He discussed the progressive imprecision of the propagation of the orbital position 
covariance matrix due to initial condition errors and a random drag. 
 
Jesus (1999) assumed punctual mass, newtonian central field, non-impulsive noncoplanar thrust 
without torques, with magnitude and angular random errors, nonlinear (keplerian) system dynamics, 
noise or random bias error dynamics, fuel minimization. He built a software to evaluate numerically 
the means, standard deviations and correlations of the final orbital elements errors, and plotted them 
against the standard deviations of the magnitude and angular random errors, finding some near 
parabolic relations as in Figures 3 and 4. It also evaluates the corrections needed, the extra time and 
fuel comsumptions. He also presented algebraic expressions for some relations in the planar case as in 
Figure 3. 
 
Figure 3 shows the behavior of the mean final semi-major axis E{a(t2)} as function of the standard 
deviation  = DES2 in the in plane thrust angle (t) from the zero mean of the gaussian distribution 
error (t) for a theoretical case used by Biggs (1978, 1979), Prado (1989), and Jesus (1999) ( a 
planar, high orbit, low thrust transfer from an initial orbit a = 99000 km, e = 0.7, i = 10.0o,  = 55o,  
= 105o, f = -105o; to a final orbit a = 104000 km, e = 0.714, i = 10.0o,  = 55.006o,  = 104.917o, f = 
21.213o, with thrust intensity T= 1 N, fuel mass m=2.448 kg, ejection speed c= 2.5 km/s, burn time = 
1.700 h).  
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Figure 3: E{a(t2)} x DES2, th. case. Figure 4: E{a(t2)} x DES2, pr. case. Source: Jesus (1999). 
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Figure 2 shows similar data as function of the maximum deviation max = 3  = DES2 in the in 
plane thrust angle (t) from the zero mean of the uniform distribution error (t) for a practical case 
used by Kuga et al. (1996) (a nonplanar middle orbit high thrust Eutelsat transfer from an initial orbit 
a = 24387.984 km, e = 0.730044, i = 6.9948o,  = 277.4743o,  = 178.1326o, f = 200.1568o, to a final 
orbit a = 27373.907 km, e = 0.542, i = 3.457o,  = 276.265o,  = 177.004o, f = 189.210o, with thrust 
intensity T= 407.3 N, fuel mass m= 289.9867 kg, ejection speed c= 3.013 km/s, burn time = 0.622 h). 
 
Rocco (2000) is assuming punctual mass, newtonian central field, non-impulsive noncoplanar thrust 
without torques, with magnitude and angular random errors, nonlinear (kepler) system dynamics, pink 
noise or random bias error dynamics, fuel minimization but with a time limit for the transfer. He may 
extend what Jesus (1999) did. 
 

SUGGESTIONS OF SOME RESEARCH DIRECTIONS 
 

So, we find that the open literature lacks works in many research directions including:  
a) to study the effects of thrust misalignments for a nonpunctual mass, in an actual non-Newtonian 

central field with geopotential and other perturbations, under non-impulsive noncoplanar thrust 
with torques, with magnitude, linear and angular random errors/misalignments, nonlinear system 
attitude and orbit dynamics, due to fuel consumption and CM displacements, attitude control or 
not, pink noise or other error dynamics, fuel minimization. 

b) to present algebraic expressions to explain the remaining relations in the planar transfer, and all of 
them in the non-planar case; and to compare their predictions with numerical and experimental 
results. 

c) to repeat all this analysis with a min-max approach, instead of the deterministic or the stochastic 
approaches. 

 
CONCLUSIONS 

 
In this work we discussed the effects of thrust misalignments on orbit transfers based on the open 
literature and on our researches. Despite being a topic of theoretical and practical importance as 
pointed out above, the open literature is poor of works that explicitly deal with it and its related ones. 
Among them, we discussed the works of: Porcelli and Vogel (1980), Adams and Melton (1986), Rao 
(1993), Howell and Gordon (1994), Junkins et al. (1996), Junkins (1997), Carlton-Wippern (1997), 
and Alfriend (1999). To add to or to clarify them, we discussed our researches presented in the works 
of Rodrigues (1991), Santos-Paulo (1998), Jesus (1999), Rocco (1999), and others, under the 
supervision of the two first authors of this paper. Finally, we suggested some research directions. 
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TABLE 3. Results for Case 7 under errors. Source: Santos-Paulo (1998). 

KEPLERIAN ELEMENTS OF THE 
DESIRED FINAL ORBIT 

a (km) 
 

8000 

e 
 

0.2 

i (degrees) 
 

5 

 (degrees) 
 
0 

 (degrees) 
 

10 
 

tIDEAL 
 

45 minutes 

VIDEAL 

 
 0.7545 km/s 

ERROR HYPOTHESES 
 

KEPLERIAN ELEMENTS OF THE REACHED FINAL ORBIT 
 

A 
 =  = 0° 
V = 3% 

B 
 =  = 0° 
V = -3% 

G 
==-2.5° 
V = 0% 

H 
== 2.5° 
V = 0% 

a (km) 8045 7981 8072 7982 
 

e 0.2 0.2 0.2 0.2 
 

i (degrees) 5 5 5 5 
 

 (degrees) 358 359 359 358 
 

 (degrees) 11 12 10 24 
 

tTOTAL 43’ 45’ 2h 50’ 60’ 
 

VTOTAL 

(km/s) 
0.7352 0.7347 0.7609 1.0100 

 

Increment in tTOTAL -2’ Zero 2h 05’ 15’ 
 

Increment in VTOTAL (km/s) -0.0194 -0.0198 0.0064 0.2555 
 

Number of iterations  3 (7) 3 (7) 7 (7) 5 (7) 
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TABLE 1 - Summary of some significant works on trajectory/orbit transfers. Source: Rodrigues (1991) with additions. 
AUTHOR (YEAR) VEHICLE 

MODEL 
EXTERNAL FOR 
CES & TORQUES 

THRUST MODEL SYSTEM/ERROR 
DYNAMICS 

APPROACH CONTRIBUTION 

HOHMANN(1925) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

2 IMPULSIVE 
T =  , M = 0 

NONLINEAR/ 
NONE 

GEOMETRIC 
/ENERGY 

PIONEER TRANSFER USED UNTIL 
NOW 

TSIEN(1953) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T = k , M = 0 

NONLINEAR/ 
NONE 

ORBITAL ANALYTICAL STUDY WITH RADIAL 
THRUST 

LAWDEN(1955) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T = k , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

PRIME VECTOR METHOD MUCH USED 
IN OPTIMIZATION 

ECKEL(1962) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

N IMPULSIVE 
T =  , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

GENERALIZATION TO N IMPULSES 
TRANSFER 

ZEE(1963) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T = k , M = 0 

NONLINEAR/ 
NONE 

ORBITAL ANALYTICAL SOLUTION TO A GIVEN 
THRUST 

ROBBINS(1966) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

BOTH T =  &  
T = k , M = 0 

NONLINEAR/ 
NONE 

COMPARATIVE COMPARATIVE ANALYTICAL STUDY 
IMPULSIVE X NONIMPULSIV. THRUST 

PORCELLI& 
VOGEL (1980) 

PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

2 IMPULSIVE 
T = +, M = 0 

NONLINEAR/ 
LINEAR 

SEMIANALYTIC 
PROBABILISTIC 

LINEAR COVARIANCE ANALYSIS OF 
ERRORS DUE TO  

FLURY(1985) NONPUNCTU
AL MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T = k , M = 0 

NONLINEAR/ 
NONE 

ORBITAL & OPTI 
MIZATION 

WITH ATTITUDE & STABILIZATION 
DURING TRANSFER 

ADAMS&MELTON
(1986) 

PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

N IMPULSIVE 
T = +, M = 0 

NONLINEAR/ 
LINEAR 

SEMIANALYTIC 
PROBABILISTIC 

LINEAR COVARIANCE ANALYSIS OF 
ERRORS DUE TO  

VINH ET AL.(1987) PUNCTUAL 
MASS 

NEWTONIAN 
C.FIELD+DRAG 

NONIMPULSIVE 
T = k , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

WITH DRAG IN REENTRY TRANSFER 

FERNANDES& 
MORAES (1989) 

PUNCTUAL 
MASS 

NEWTONIAN 
C.FIELD+OBLAT. 

IMPULSIVE 
T =  , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

WITH EARTH OBLATNESS 

CHATERJEE(1989) PUNCTUAL 
MASS+FLEX 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T =  , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

ORBITAL TRANSFER OF FLEXIBLE 
STRUCTURES 

PRADO (1989) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T =  , M = 0 

NONLINEAR/ 
NONE 

SEMIANALYTIC 
OPTIMIZATION 

3-DIMENSIONAL MINIMUM FUEL NON 
IMPULSIVE ORBIT TRANSFER 

RODRIGUES 
(1991) 

NONPUNCTU
AL MASS 

NEWTONIAN 
CENTRAL FIELD 

NONIMPULSIVE 
T = + , M  0 

NONLINEAR/ 
NONLINEAR 

SEMIANALYTIC 
DETERMINISTIC 

COUPLING OF ORBIT &ATTITUDE 
CHANGES X ATITUDE CONTROL 

RAO (1993) PUNCTUAL 
MASS 

NEWTON. C. 
 FIELD+PERT. 

NONE 
T = 0 , M = 0 

NONLINEAR/ 
LINEAR 

SEMIANALYTIC NUMERICAL &ANALYTICAL ERROR 
PROPAGATION DUE TO PERTURBAT. 

JUNKINS(1997) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

NONE 
T = 0 , M = 0 

NONLINEAR/ 
LIN.&NONLIN. 

NUMERICAL 
PROBABILISTIC 

COMPARISON OF LIN. & NONLINEAR 
INIT. COND. NUMER.ERROR PROPAG. 

CARLTON-
WIPPERN(1997) 

PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

IMPULSIVE 
T = + , M = 0 

NONLINEAR/ 
NONLINEAR 

ANALYTIC 
PROBABILISTIC 

ANALYTICAL MEAN ERROR PROPAGA 
TION DUE TO  

SANTOS-PAULO 
(1998) 

PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 

2,3 IMPULSIVE 
T = + , M = 0 

NONLINEAR/ 
NONLINEAR 

NUMERICAL 
DETERMINISTIC 

NUMERICAL ERROR PROPAGATION 
DUE TO  

JESUS(1999) PUNCTUAL 
MASS 

NEWTONIAN 
CENTRAL FIELD 
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NONLINEAR/ 
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PROBABILISTIC 
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FIELD +PERT. 

REALISTIC MOD. 
(T = k+ , M  0) 

NONLIN.,T.VAR 
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TABLE 2. Results for Case 2 under errors. Source: Santos-Paulo (1998). 
KEPLERIAN 

ELEMENTS OF 
THE DESIRED 
FINAL ORBIT 

 
a = 9000 km 

 
e = 0 

 
i = 10° 

 
 = 45° 

 
 = undefined 

tIDEAL 
1 hour 

VIDEAL 
1,1261 km/s 

 
  =   
V 

A 
0° 
3% 

B 
0° 

-3% 

C 
0° 
5% 

D 
0° 

-5% 

E 
0° 

10% 

F 
0° 

-10% 

G 
-2.5° 
0% 

H 
2.5° 
0% 

I 
- 5° 
0% 

J 
5° 
0% 

L 
- 2.5° 
-5% 

 

M 
2.5° 
-5% 

 
 

N 
-5° 
-5% 

P 
5° 

-5% 

 
KEPLERIAN ELEMENTS OF THE REACHED FINAL ORBIT 

 
 

a (km) 
 

8993 
 

8999 
 

8794 
 

8982 
 

8933 
 

8977 
 

8951 
 

8937 
 

8988 
 

8970 
 

8952 
 

8992 
 

8959 
 

8985 
 

E 
 

0.0005 
 

0.0006 
 

0.06 
 

0.003 
 

0.009 
 

0.002 
 

0.006 
 

0.006 
 

0.005 
 

0.002 
 

0.02 
 

0.001 
 

0.04 
 

0.004 
 

i (degrees) 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 

10 
 
9 

 
10 

 
10 

 
9 

 
 (degr.) 

 
45 

 
45 

 
34 

 
43 

 
42 

 
45 

 
45 

 
45 

 
45 

 
45 

 
28 

 
45 

 
34 

 
42 

 
 (degr.) 

 
312 

 
211 

 
125 

 
37 

 
295 

 
350 

 
55 

 
37 

 
260 

 
341 

 
14 

 
39 

 
24 

 
320 

 
tTOTAL 

 
5h 32’ 

 
3h 28’ 

 
9h 09’ 

 
2h 45’ 

 
5h 40’ 

 
3h 18’ 

 
4h 30’ 

 
2h 07’ 

 
5h 29’ 

 
3h 31’ 

 
5h 36’ 

 
4h 17’ 

 
4h 33’ 

 
4h 29’ 

VTOTAL 

(km/s) 
 

2.9430 
 

1.1537 
 

2.1116 
 

1.1214 
 

1.9987 
 

1.1668 
 

1.8287 
 

1.2610 
 

1.9849 
 

1.2255 
 

1.4388 
 

1.1753 
 

1.6288 
 

1.0946 
Increment in 
tTOTAL 

 
4h 32’ 

 
2h 28’ 

 
8h09’ 

 
1h 45’ 

 
4h 40’ 

 
2h 18’ 

 
3h 30’ 

 
1h 07’ 

 
4h 29’ 

 
2h 31’ 

 
4h 36’ 

 
3h 17’ 

 
3h 33’ 

 
3h 29’ 

Increment in 
VTOT(km/s)

 
1.8169 

 
0.0276 

 
0.9855 

 
- 0.0047

 
0.8726 

 
0.0407 

 
0.7026 

 
0.1349 

 
0.8588 

 
0.0994 

 
0.3127 

 
0.0492 

 
0.5027 

 
- 0.0315 

Number of  
iterations 

 
13 (13) 

 
7 (7) 

 
15 (19) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 
9 (9) 

 
7 (7) 

 


