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ABSTRACT 
 
In this paper we present the first part of a Monte-Carlo analysis of nonimpulsive orbital transfers 
under thrust errors. This was done as part of an extensive study conducted in three phases. The first 
phase was the numerical implementation and numerical tests of a nonimpulsive trajectory 
optimization method. The second phase was an extensive Monte-Carlo analysis on nonimpulsive 
orbital transfers under thrust errors. The third phase was a first algebraic explanation for some of the 
numerical relations found in the second phase. This paper emphasizes the first (uniform) part of the 
second phase. Its main results suggest and partially characterizes the progressive deformation of the 
trajectory distribution along the propulsive arc, turning 3sigma ellipsoids into banana shaped volumes 
curved to the center of atraction (we call them “bananoids”) due to the loss of optimality of the actual 
(with errors) trajectories with respect to the nominal (no errors) trajectory. Such deformations can not 
be anticipated by covariance analysis on linearized models with zero mean errors which propagate 
ellipsoids into ellipsoids always centered in the nominal (no errors) trajectory. The results also 
characterize how close or how far are Monte-Carlo analysis and covariance analysis for those 
examples. 
 

INTRODUCTION 
 

Most space missions need trajectory/orbit transfers to reach their goals. These trajectories/orbits are 
reached sequentially through transfers between them by changing their keplerian elements, by firing 
apogee motors or other sources of force. These thrusts have linear and/or angular misalignments that 
displace the vehicle with respect to its nominal directions. The mathematical treatment for these 
deviations can be done in many ways (deterministic, probabilistic, minimax, etc.) (Souza et alli, 
1998): 
 
In the deterministic approach, Rodrigues (1991) analyzed the effects of the errors in nonimpulsive 
thrust on coplanar transfers of a nonpuntual model of a satellite. As such, it is the only work we got 
considering the attitude motion, the center of mass misalignments, and the reduction of thrust with 
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use. Santos-Paulo(1998) analyzed the effects of errors in impulsive thrusts on coplanar or noncoplanar 
transfers of punctual model of a satellite. Other correlated papers are Schultz (1997) and Rocco(1999). 
 
In the probabilistic approach, Porcelli and Vogel (1980) presented an algorithm for the determination 
of the orbit insertion errors in biimpulsive noncoplanar orbital transfers(perigee and apogee), using 
the covariance matrices of the sources of errors. Adams and Melton (1986) extended such algorithm 
to ascent transfers under a finite thrust, modeled as a sequence of impulsive burns. They developed an 
algorithm to compute the propagation of the navigation and direction errors among the nominal 
trajectory, with finite perigee burns. Howell and Gordon(1994) also applied covariance analysis to the 
orbit determination errors and they developed a station-keeping strategy of Sun-Earth L1 libration 
point orbits. Junkins (1997) discussed the precision of the error covariance matrix method through 
nonlinear transformations of coordinates. He also found a progressive deformation of the initial 
ellipsoid of trajectory distribution (due to gaussian initial condition errors), that was not anticipated by 
the covariance analysis of linearized models with zero mean errors. Carlton-Wippern (1997) proposed 
differential equations in polar coordinates for the growth of the mean position errors of satellites (due 
to errors in the initial conditions or in the drag), by using an approximation of Langevin’s equation 
and a first order perturbation theory. Alfriend(1999) studied the effects of drag uncertainty via 
covariance analysis.  
 
In the minimax approach: see russian authors, mainly. 
 
However, all these analyses are approximated and motivated an exhaustive numerical but exact 
analysis (by Monte-Carlo) and a partial algebraic analysis done by Jesus(1999), to highlight and to 
study effects not taken care previously. 
 
In this work we present the first (uniform) part of a Monte-Carlo analysis of the nonimpulsive orbital 
transfers under thrust vector errors. The results were obtained for two transfers: the first, a low thrust 
transfer between high coplanar orbits, used by Biggs (1978, 1979) and Prado (1989); the second, a 
high thrust transfer between middle noncoplanar orbits (the first one of the EUTELSAT II-F2 
satellite) implemented by Kuga et alli (1991). 
 
The simulations were done for both transfers with minimum fuel consumption. The optimization 
method used by Biggs (1978 and 1979) and Prado (1989) was adapted to the case of transfers with 
thrust errors. The “pitch” and “yaw” angles were taken as control variables defined by the overall 
minimum fuel consumption. 
 
The error sources considered were the magnitude errors, the “pitch” and “yaw” direction errors of the 
thrust vector, as causes of the deviations found in the Keplerian elements of the final orbit. Each 
deviation was introduced separately along the orbital transfer trajectory. We studied two types of 
errors for each one of these causes: the systematic/constructional/assembly errors (modeled as 
random-bias) and the operational errors (modeled as white-noise). The random-bias errors are 
unknown but constants during all the transfer arc, while the white-noise errors change along the 
transfer arc. These error sources introduced in the orbital transfer dynamics cause effects in the 
keplerian elements of the final orbit at the final instant. 
 
In this work we present an statistical analysis of the effects of these errors on the mean of the 
deviations of the keplerian elements of the final orbit with respect to the reference orbit (final orbit 
without errors in the thrust vector) for both transfers. The approach for the treatment of the errors was 
probabilistic, assuming these as having zero mean uniform probability density function.  
 

MATHEMATICAL FORMULATION AND COORDINATE SYSTEMS 
 

The orbital transfer problem studied can be formulated in the following way:  
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1)  Globally minimize the performance index: J = m(t0) – m(tf); 
 

2) With respect to  : [t0,tf] R (“pitch” angle) and  : [t0,tf] R (“yaw” angle) with , C-1 
em [t0,tf]; 

3) Subject to the dynamics in inertial coordinates Xi, Yi, Zi of Figure 1: t  [t0,tf],  
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Or in orbital coordinates(radial R, transversal T, and binormal N) of Figure 1: 
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4) Given the initial and final orbits, and the parameters of the problem( m(t0), c,...). 
 
These equations were obtained by: 1) writing in coordinates of the dexterous rectangular reference 
system with inertial directions OXiYiZi the Newton’s laws for the motion of a satellite S with mass m, 
with respect to this reference system, centered in the Earth’s center of mass O, with Xi axis toward the 
Vernal point, XiYi plane coincident with Earth’s Equator, and Zi axis toward the Polar Star 
approximately; 2) rewriting them in coordinates of the dexterous rectangular reference system with 
radial, transversal, binormal directions SRTN, centered in the satellite center of mass S; helped by 3) a 
parallel system with OXoYoZo directions, centered in the Earth’s center of mass O, Xo axis toward the 
satellite S, XoYo plane coincident with the plane established by the position R and velocity V vectors 
of the satellite, and Zo axis perpendicular to this plane; and helped by 4) the instantaneous keplerian 
coordinates (, I, , f, a, e). These equations were later rewritten and simulated by using 5) 9 state 
variables, defined and used by Biggs(1978, 1979) and Prado(1989), as functions of angle s shown in 
Figure 2. 

 

Figure 1 -  Reference systems used in this work. 
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The nonideal thrust vector, with magnitude and direction errors, is given by:  
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where: F


, EF


 e F


 are: the thrust vector without errors, the thrust vector with errors, and the error 
inthe thrust vector, respectively;  e  are the errors in the “pitch” and in the “yaw” angles, 
respectively; FR, FT e FN are the components of the thrust vector with errors EF


 in the radial, 

transversal and normal directions, respectively. The magnitude error, F, was computed as a 
percentage of the nominal force, while the direction errors  e  were computed in units of angle. 
They are varied inside given ranges, that is,  DES1.F for F,  DES2 for  and  DES3 for . 
This variation will correspond to the implementation of the random numbers that satisfy a uniform 
probability distribution into those ranges. In this way, for each implementation of the orbital transfer 
arc, values of  and  are chosen, whose errors are inside the range, that produce the direction for the 
overall minimum fuel consumption. 

 
                        Figure 2 – Thrust vector applied to the satellite and the variable s. 
 

REFERENCE MANEUVERS USED 
 
The first one came from Example 1, Chapter III of Biggs (1978). The second one came from Kuga et 
alli (1991). This is the first of three transfer maneuvers of the EUTELSAT II-F2 satellite launched 
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from Kourou by an Ariane 4 launcher in January 15, 1991 and injected in a gestationary transfer orbit 
(GTO). Their values are in Tables 1 and 2: 
 

Table 1: keplerian elements for  reference maneuvers used 
 1st.Maneuver (Biggs, 1978) 2nd.Maneuver (Kuga, 1991) 

Keplerian elements Values at t0 Values at tf Values at t0 Values at tf 
Semi-major axis a (km) 99000.000 104000.000 24387.984 27373.907 
Eccentricity e 0.7 0.714 0.730044 0.542 
Inclination i (deg.) 10.00 10.00 6.99480 3.4570 
Ascend. Node  (deg.) 55.00 55.0060 277.47430 276.2650 
Arg. of perigee  (deg.) 105.00 104.9170 178.13260 177.0040 
True anomaly f (deg.) -105.00 21.2130 200.15680 189.2100 

 
Table 2: Common values for  reference maneuvers used 

Common values 1st.Maneuver (Biggs, 1978) 2nd.Maneuver (Kuga, 1991) 
Thust F (N) 1.0 407.3 

Available fuel m(t0) 
(kg) 

2.50 302.691 

Exhaust speed c (km/s) 2.5 3.0113 
Burn duration tf-t0 (h) 1.700 0.622 

Used fuel m(t0,tf) (kg) 2.448 289.9867 
Initial s s(t0) (deg.) 71.6970 341.3180 
Final s s(tf) (deg.) 126.1360 346.7180 

Init.pitch angle  (deg.) -7.7930 -3.5160 
Init.yaw angle  (deg.) 0.4290 -25.9200 

Init. Pitch rate (deg./s) 0.8890 2.5260 
Init. yaw rate  (deg./s) -0.0060 6.4080 

Initial s step s (deg.) 10.00 5.00 
Number of prop. Arcs 1 1 

 
NUMERICAL RESULTS 

 
The simulations were performed with 1000 realizations for each transfer, that is, 1000 runs were done 
with random values for each DES1, DES2 and DES3, such that the results obtained for the final 
keplerian elements represent the arithmetic mean of 1000 realizations (mean over the ensemble). The 
value 1000 was chosen to represent the set of runs because the mean deviations in all final keplerian 
elements with respect to their references converge to their steady state values for this number of runs. 
Figures 3 and 4 show the mean deviations in the final semi-major axis and eccentricity versus the 
number of runs, respectively. These plots were done for systematic pitch direction with DES2=1.00. 
The computation of the mean deviations of the final keplerian elements with respect to their 
references can be estimated by the arithmetic mean of them, for 1000 runs as representatives. So,we 
can estimate mean deviation of a final keplerian element, K as, 
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It is important to remark that Eq. (25) estimates a mean in the ensemble and not in the time. In this 
work we present only these estimates for the final semi-major axis and eccentricity with respect to 
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their references. Figures 5 to 16 present the behavior of them as functions of the maximum (random-
bias and white noise) direction errors. For the random-bias errors we found the following results: 
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1) Uniform random-bias errors: semi-major axis (a), “pitch” errors 
We note in Figures 5 and 6, behaviors very similar for both maneuvers, although they are very 
different from each other. We easily observe that the values of the mean semi-major axis present a 
region of  
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decrease sufficiently defined according to the growth of the maximum “pitch” error, DES2. Figures 5 
and 6 suggest a nonlinear law between these elements for both cases, that is, they suggest a cause vs. 
effect relation in the orbital transfer phenomenon, not depending of the maneuver studied. 
 
2) Uniform random-bias errors: semi-major axis (a), “yaw” errors 
Once more Figures 7 and 8 show behaviors well defined and similar for the semi-major axis as 
function of the maximum “yaw” error, DES3, for both maneuvers studied. That is, there is a region of 
decrease well defined between the elements a and DES3. In the second case, the curve found seems to 
turn itself smoother with respect to the case DES2. This fact is due to the stronger dependence of this 

Figure 3 –Semi-major axis 

deviation (km) vs. N 
Figure 4 - Eccentricity deviation (x10-4) 
vs. N 

Figure 5 – First Maneuver: E{a(tf)} 
(km) vs DES2 (o) 

Figure 6 – Second Maneuver: E{a(tf)} 
(km) vs DES2 (o) 
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element with DES3. So, we can say that this nonlinear relation between the cause along the transfer 
and the effect in the final instant also occurs for the out-of-plane maneuvers. 
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3) Uniform random-bias errors: eccentricity (e), “pitch” and “yaw” errors 
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Figures 9 and 10 show the nonlinear behavior of the mean final eccentricity with the maximum 
“pitch” and “yaw” deviations. They were done only for the second maneuver because in the first one 
the change of the eccentricity is close to zero for the usual values of DES2 and DES3. They were 
plotted with precision of 10-3 for the eccentricity.  
 

5) Uniform white-noise errors: semi-major axis (a), “pitch” errors 
For the white-noise errors Figures 11 and 12 were very similar to the results obtained for the random-
bias errors but the curves for the “pitch” errors present a more defined pattern with respect to those for 
the “yaw” errors, where small fluctuations appear in its final form. It is possible to see that the 
influence of the out-of-plane (“yaw”) errors is so strong in the definition of the orbital transfer 
trajectory. 

 

Figure 7 – First Maneuver: E{a(tf)} 
(km) vs DES3 (o) 

Figure 8 – Second Maneuver: E{a(tf)} 
(km) vs DES3 (o) 

Figure 9 – Second Maneuver: 
E{e(tf)} (km) vs DES2 (o) 

Figure 10 – Second Maneuver: E{e(tf)} 
(km) vs DES3 (o) 



Advances in Space Dynamics, 2000 
 

432 
 

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00
DES2 ( )

103750.00

103800.00

103850.00

103900.00

103950.00

104000.00

      0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00 30.00
DES2 ( )

27200.00

27240.00

27280.00

27320.00

27360.00

27400.00

 
 
 
 

5) Uniform white-noise errors: semi-major axis (a), “yaw” errors 
 
Figures 13 and 14 clearly show the influence of the white-noise errors when the second maneuver 
is simulated with errors in “yaw”. The region of decrease and the nonlinear relation still exist, but 
there are fluctuations in the growth of the maximum “yaw” error. 
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6) Uniform white-noise errors: eccentricity (e), “pitch” and “yaw” errors 
Figures 15 and 16 show that the values of the eccentricity also fluctuate for practical maneuvers with 
the white-noise errors in “yaw”, but keeping the region of growth similar to the one verified for the 
random-bias errors case. So, we can say that all these results suggest and partially characterizes the 
progressive deformation of the trajectory distribution along the propulsive arc. It occurs due to the 
loss of optimality of the actual trajectories (with errors) with respect to the nominal trajectories 
(without errors). 
 
The dependence of the final keplerian elements with the magnitude errors for any of the cases was 
practically null, specially for the mean deviation of the final semi-major axis, since the perturbations 
occurred in this element were probably due to its estimator and they were comparable to the numerical 

Figure 11 – First Maneuver: 
E{a(tf)} (km) vs DES2 (o) 

Figure 12 – Second Maneuver: 
E{a(tf)} (km) vs DES2 (o) 

Figure 13 – First Maneuver: E{a(tf)}  
(km) vs DES3 (o) 

Figure 14 – Second Maneuver: 
E{a(tf)} (km) vs DES3 (o) 
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errors of the experiment, as shown in Figures 17 and 18. They show that the mean deviation in the 
final semi-major axis is much smaller than the cone  1  (standard deviation of the deviation in the 
final semi-major axis). 
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The values for DES1, DES2 and DES3 used in these plots range from usual values to nonusual values, 
with the aim to verify the general behaviors. Obviously, it is not usual to have a “pitch” error equal to 
30.00 or a magnitude error equal to 30.0%, for example. 
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CONCLUSIONS 

 
This work presented results of the thrust vector errors implementation for nonimpulsive orbital 
transfer maneuvers. It was verified that, in any case, the mean deviation in the final semi-major axis 
presents a nonlinear (approximately parabolic) dependence with the maximum errors in thrust 
directions. The same results were verified for the mean deviation in the final eccentricity, for the 
second transfer. The respective dependences with the thrust magnitude errors were not verified. Such 

Figure 15 – Second Maneuver: 
E{e(tf)} (km) vs DES2 (o) 

Figure 16 – Second Maneuver: E{a(tf)} 
(km) vs DES3 (o) 

Figure 17 – First case; E{a(tf)} (km) 
vs DES1 (o) and its  (std.dev.) 

Figure 18 – 2nd. case; E{a(tf)} (km) 
vs DES1 (o) and its  (std. dev.) 
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results suggest a progressive deformation of the trajectory distribution along the propulsive arc. This 
deformation may be associated to the loss of the optimality of the actual trajectories with respect to 
the nominal trajectory. These results also suggest and partially characterizes the progressive 
deformation of the trajectory distribution along the propulsive arc, turning 3sigma ellipsoids into 
banana shaped volumes curved to the center of atraction (we call them “bananoids”) due to the loss of 
optimality of the actual (with errors) trajectories with respect to the nominal (no errors) trajectory. 
Such deformations can not be anticipated by covariance analysis on linearized models with zero mean 
errors which propagate ellipsoids into ellipsoids always centered in the nominal (no errors) trajectory. 
The results also characterize how close or how far are Monte-Carlo analysis and covariance analysis 
for those examples. 
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