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ABSTRACT 

In this paper the problem of spacecraft orbit transfer with minimum fuel consumption is 
considered. The main goal is to develop and implement an algorithm that solves the 
problem of bi-impulsive three-dimensional orbital transfer. After a search in the 
literature and analysis of the results available, one selects a method developed by 
Altman and Pistiner to be the base of the algorithm developed. Their method has the 
goal of solving the minimum fuel consumption between two fixed positions in space. In 
the present paper this method is extended to solve the problem of bi-impulsive transfer 
between two noncoplanar orbits. The spacecraft is supposed to be in Keplerian motion 
controlled by the thrusts, that are assumed to be impulsive. Results of simulations are 
presented. The proposed algorithm has two useful characteristics: i) it allows an easy 
handling of constraints in the region of the orbit that the thrust can be applied, what can 
be used to avoid burning when the satellite is not visible from the ground stations; ii) it 
can easily balance between the accuracy of the solution and the time required for solvng 
the problem, what makes it suitable for on-board implementation in an autonomous 
satellite. 
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INTRODUCTION 

The launching of a geostationary or a heliosynchronous satellite, the orbit corrections, 
the maintenance of space stations, the interplanetary trips and the interception of 
celestial bodies are examples of ordinary space missions very popular nowadays due to 
the great advance of the Space Sciences, and that require orbital maneuvers for their 
execution. Since it became necessary the use of vehicles equipped with propulsion 
systems to perform such space missions, it became also necessary the study of the 
optimal transfer problem of a spacecraft between two given orbits. Some of the papers 
related to this research are: Hohmann (1925), Hoelker and Silber (1959), Lawden 
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(1962), Ting (1960), Eckel and Vinh (1984), Jin and Melton (1991), Roth (1967), Prado 
and Broucke (1994), Eckel (1963), Broucke and Prado (1993, 1996), Rocco (1997). In 
this paper, we study the tridimensional optimal bi-impulsive transfers extending the 
formulation of Altman and Pistiner (1964). A more detailed study can be found in Paulo 
(1998). 

DEFINITION OF ORBITAL TRANSFER 

An orbital transfer consists of changing the state of a space vehicle. The state is defined 
as the position, velocity and mass of the vehicle at a given time. Fig. 1 shows an orbital 
transfer between two points marked by the subscripts “0” and “f”.  

 

Fig. 1 –  Orbital Transfer. 

 In this paper we study the three-dimensional bi-impulsive transfer, that is shown in Fig. 
2 (from Altman and Pistiner, 1964). 

The vehicle proceeds in the initial orbit (A) until the transfer point P1, when a 
instantaneous change in the velocity makes the vehicle to proceed along P1P2, until the 
final orbit. When arriving in the transfer point P2, a new impulse places the vehicle in 
the final orbit (B). The initial and final orbits are defined by their orbital parameters. 
The transfer points of the orbits A and B (P1 and P2) can be defined by the respective 
true anomalies φ1 and φ2. The plane of the transfer orbit can be determined by three 
points in space (P1, P2, O) or by two vectors with common origin 1r

r
 and 2r

r
. 

The intersection angles (between the orbital planes) and the central angle (between the 
transfer points) are determined by vector relationships that are functions of the orbital 
parameters of the initial and final orbits and of the vectors 1r

r
 and 2r

r
. 
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Fig. 2 - Three-Dimensional Transfer 

 

DESCRIPTION OF THE METHOD 

To find the orbit and the transfer points of a bi-impulsive transfer with minimum 
consumption of fuel between two noncoplanar orbits, an algorithm was elaborated and 
implemented that determines: 

  - a set of orbital elements (semi-major axis, eccentricity, inclination, argument of the 
periapsis, longitude of the ascending node) for the transfer orbit; 

- the true anomalies of the transfer points, measured in the initial and transfer orbits 
(first impulse) and in the transfer and final orbits (second impulse); 

- the variations of the velocities in the transfer points, and, consequently, the total 
variation of velocity. 

This method solves the problem of the transfer between two given orbits, generalizing 
the original formulation that solved the problem for two fixed points belonging to the 
initial and final orbits. The next step is to obtain the Cartesian coordinates of the plane 
motion starting from the known elements. With this procedure available, two values 
were guessed for the true anomalies and used, together with Equation 1, to obtain a pair 
of values for the eccentric anomalies in the initial (u1A, u2A) and in the final orbits (u1B, 
u2B). With those values we obtained two position vectors for each orbit 
( rr A1 ,rr A2 ,rr B1 , rr B2 ) and the respective velocity vectors in these points 
( rv A1 , rv A2 , rv B1 , rv B2 ). The versors ( rsA ,rsB ) of the planes of the orbits (initial and final, 
respectively) are given by Equation 1.  
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(1) 

where n = A (initial orbit) or B (final orbit). 

Since this method intends to find the orbit of minimum fuel transfer between two given 
orbits, these orbits were discretized in terms of the true anomaly (φ1, φ2) of the transfer 
points. The angle φ1 describes the true anomaly (measured in the initial orbit) of the 
point of application of the first impulse. The angle φ2 describes the true anomaly 
(measured in the final orbit) of the point of application of the second impulse. This 
approach gives the possibility to limit the values of (φ1, φ2) in given intervals. So, it is 
necessary to give the information of an initial and final values and of an increment for 
both angles. Thus, the method of Altman and Pistiner (1964) was implemented to obtain 
the transfer with the smallest total cost (∆V1 + ∆V2) between the two fixed points. The 
number of points of discretization is defined for each case, depending on the accuracy 
required, and we tested all the possible combinations between these points with the 
objective of finding the pair of transfer points that generates the transfer with the 
smallest fuel consumption. The procedure to determine the position and velocity in the 
transfer points (rr1 , r

r2 , rv1 , rv2 ), as well as the versor of the transfer orbit plane (rst ) is 
the same described previously. So: 

  
21

21
t rxr

rxr
s rr

rr
r

=  
 

                                                             (2) 

The central angle σ is the angle that the space vehicle should travel between the instants 
t1 and t2 (during the transfer) and it is defined by the positions rr1  and rr2 . It is: 

cos σ =
⋅r r

r r
r r
r r
1 2

1 2
 

 

                                                              (3) 

The intersection angles ρ (between the planes of the initial and transfer orbits) and λ 
(between the planes of the transfer and final orbits) are calculated by: 

  cos ρ = ⋅
r r
s sA t                     cos λ = ⋅

r r
s sB t  (4)-(5) 

The increments of velocity (∆V1, ∆V2) in the transfer points and, consequently, the 
∆Vtotal, as well as the true anomalies (φT1, φT2) of these points, measured in the transfer 
orbit, are calculated through the following group of equations (Altman and Pistiner, 
1964), reminding that the orbital planes are different (see Figs. 5 and 6). 
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Fig. 5 - Velocity in the initial point of the transfer. 

 

 

 

Fig. 6 –  Velocity in the final point of the transfer. 

The equations are: 

radial component of VA: v v senA i A A/ = θ  (6) 

horizontal component of VA: v vA H A A/ cos= θ  (7) 

projection of VA in the horizontal direction of the orbit T: 

ρθ=ρ= coscosvcosvv AAH/Aj/A  

 

(8) 

projection of VA in the direction perpendicular to the horizontal of the orbit T: 
ρθ=ρ= sinsinvsinvv AAH/Ak/A  
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(9) 

radial component of VT: v v senT i T T1 1 1/ = θ  (10) 

horizontal component of VT:v vT j T T1 1 1/ cos= θ  (11) 

projection of VT in the direction perpendicular to the horizontal of the orbit T: 

vT k1 0/ =  

 

(12) 

∆v v v v v v vT i A i T j A j T K A K1
2

1
2

1
2

1
2= − + − + −( ) ( ) ( )/ / / / / / =  

+ρθ−θ+θ−θ= 2
AA1T1T

2
AA1T1T )coscosvcosv()senvsenv(

( cos sen )vA Aθ ρ 2                                                                                                         (13) 

Being C the velocity parameter of the orbit (inversely proportional to the angular 
momentum h), we have: 

C m
h r x vA

A A
= =µ µ

r r
1 1

C m
h r x vB

B B
= =µ µ

r r
1 1

 (14)-(15) 

Consequently: 

v v vA A i A H
2 2 2= +/ /  (16) 

( )v v C CA i C A A A/ / tan= −1
2 φ  (17) 

v v CA H C A/ /= 1
2  (18) 

v v vT T i T j1
2

1
2

1
2= +/ /  (19) 

( )v v C CT i C T T T1 1
2

1/ / tan= − φ  (20) 

( )v v CT j Cl T1
2

/ /=  (21) 

( )v C v rcm m m
2 = =φ µ /  (22) 

where m = 1 ou 2, φA  is in the plane of the initial orbit and φ T is in the plane of the 
transfer orbit. The equations for the point P2 are obtained in a similar way. The 
complete set of the transfer equations is: 

( ) ( )v v C v C Cnm cm n cm n n nm
2 2 2 2= + −/ / tan φ  (23–26) 





==
==

BorTand2m
TorAand1m

where  
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∆ ∆ ∆v v v= +1 2             (27) 

( ) ( )
∆v

a C C b C c C d

C C
e

A T T T

A T
1

2
1

2
1

2
1 1

2

2 2 2 1
2=

− + + +



 +

cos

sen

ρ

σ
 

 

(28) 

( ) ( )
∆v

a C C b C c C d

C C
e

B T T T

B T
2

2
2

2
2

2
2 2

2

2 2 2 2
2=

− + + +



 +

cos

sen

λ

σ
 

(29) 

σ φ φ= − + −( ) ( )B A B AΨ Ψ  (30) 

a vC1 1
4 2= sen σ  (31) 

b CA1 1= −( cos )σ  (32) 

c C vA C1
2

1
2

1= −( ) tan senφ σ  (33) 

( )d C v cA C C1 1
2

2
2= −cos σ  (34) 

e v CC A1 1
2= sen /ρ  (35) 

a vC2 2
4 2= sen σ  (36) 

b CB2 1= −(cos )σ  (37) 

c C vB C2
2

2
2

2= −( ) tan senφ σ  (38) 

d C v vB C C2 1
2

2
2 2= −( cos )σ  (39) 

e v CC B2 2
2= sen /λ  (40) 

v rC1
2

1= µ /  (41) 

v rC2
2

2= µ /  (42) 

φ σ σT
T C

T C

arc
C v

C v
1

2
2

2

2
1

2
1= −

−

−
























−tan cos .(sen )  

(43) 

φ
σ

σ σT
T C

T C

arc
C v

C v
2

1

2

1
2 2

2 2
=

−

−
−















































−tan
sen

cos .(sen )

  

(44) 



 8

We observed that the equations for the calculation of the increments in velocity are 
expressed as functions of only one independent variable, the parameter CT. As the 
optimal trajectory searched is the one that requests the smallest consumption of fuel:  

d V
dC

total

T

( )∆ = 0  
(45) 

giving a polinomial equation of eighth degree (Altman and Pistiner, 1964): 

K C K C K C K C K C K C K C
K C K

T T T T T T T

T

8
8

7
7

6
6

5
5

4
4

3
3

2
2

1 0 0
+ + + + + +

+ =
+  

(46) 

where: 

( ) ( )[ ]K A G B A D H8
2 2 4= − + −  (47) 

( ) ( )[ ] ( )[ ]K A A J E DG BH BG G B7 4 2= − + − + −  (48) 

         ( ) ( )[ ] [ ]K A BJ EG GJ BE DG B H6
2 22 4= − + − + −  (49) 

          ( ) ( )[ ] ( )[ ]K A F G B DJ EH BG J E B J EG5
2 24 2 2= − + − + − + −  (50) 

          ( ) ( )[ ] ( )[ ] ( )[ ]K A J E F D H F G B DGJ BEH4
2 2 2 28 2= − − − + − + −  (51) 

( ) ( )[ ] ( )[ ] [ ]K F A J E DG BH EJ G B BJ E G3
2 24 2 2= − − + − − − + −  (52) 

          ( ) ( )[ ] [ ]K F BJ EG GJ DJ E H2
2 22 4= − − + − + −BE  (53) 

          ( ) ( )[ ] ( )[ ]K F F G B DJ EH EJ J E1 4 2= − − + − − −  (54) 

           ( ) ( )[ ]K F J E F D H0
2 2 4= − + −  (55) 

and 

A
b

CA
= 1

2

2  
(56) 

         B
b c

CA
=

2 1 1
2  

(57) 

( )
D

a b d c

CA
=

+ +1 1 1 1
2

2

2
 

(58) 
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( )

E
C a c d

C
A

A
=

−2 1 1 1
2

cos ρ
 

(59) 

           F v v v vC C C C= − +1
4

1
2

2
2

2
42 cos σ  (60) 

G
b c
CB

=
2 2 2

2  
(61) 

          
( )

H
a b d c

CB
=

+ +2 2 2 2
2

2

2
 

 

(62) 

           
( )J
C a c d

C
B

B
=

−2 2 2 2
2

cos λ
 

 

(63) 

To find the parameter CT, that is one of the roots of Equation 46, we used the method of 
splitting the interval in two parts. This method requests the previous knowledge of the 
limits of the interval where to search the root. We know that if an interval (a, b) contains 
only one root, then the signs of f(a) and f(b) are opposed. After we found CT, the 
transfer orbit can be completely identified. The magnitude of the impulses ∆V1, ∆V2 can 
be obtained directly from Equations 28 and 29. The values of φT1 and φT2 can be 
obtained through Equations 43 and 44. The semi-major axis (aT) and the eccentricity 
(eT) are obtained by solving a system formed by Equations 64 and 65: 

r a e
e T

1

2

1

1
1

= −
+

( )
cos φ

                r a e
e T

2

2

2

1
1

= −
+

( )
cos φ

 
 

(64)-(65) 

Fig. 7 shows that, r
r1= (x1, y1, z1) e rr2 = (x2, y2, z2), the longitude of the ascending node 

(Ω), the argument of the periapsis (ω) and the inclination (i) can be calculated by: 

Ω = −tg 1 ( )κ  (66) 

where:                    
( )
( )

κ =
−

=
−
−

r r

r r
r x r i

r x r j
y z z y
x z z x

1 2

1 2

1 2 1 2

1 2 1 2

$

$
( ) ( )
( ) ( )

 
 

(67) 

 

                              cos( )
.

ω φ+ =T
r M
r M

1
1

1

r r

r r  , com 
r
M = (1, κ, 0) 

 

(68) 

 

Being 
r

M  a vector in the direction of the intersection line between the planes of the 
transfer and the initial orbits, where the component in x is assumed unitary, the 
component in y is given by k and the component in z is null. See Fig. 7. 
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cos . $i s zt=
r  , where $z  = (0, 0, 1) (69) 

 

Fig. 7 – Geometry of the transfer. 

RESULTS 

With the equations developed in this work, the implemented method can be applied for 
transfers between any conical orbits. The implemented version of the method is not 
valid only for the cases of bi-impulsive transfers where the impulses are applied in 
points separated by 180°. These cases include the most well-known problem, the 
Hohmann transfer (Hohmann, 1925). Despite their importance, they can be easily 
solved by other methods and they do not need the tools developed in this work. 

To compare, we present, in the first case, the magnitude of the total impulse requested 
by the transfer obtained in the works of Biggs (1978) and Schulz (1997). We observed 
that this comparison will be limited to the consumption of fuel due to the fact that this 
problem has more than one solution, that is, different points of application of the 
impulses can present very close values for the fuel consumption. 

Case 1 (Elliptic - Elliptic non-coplanar)   

We considered the transfer between two elliptic orbits, of eccentricities 0.02 and 0.016; 
respectively, the initial and final orbits. The values of the semi-major axis, inclination, 
argument of the periapsis and longitude of the ascending node are, respectively: 
12030.00 km, 0.5°, 182° and 0° for the initial orbit; and 11994.70 km, 0.3°, 175.9° and 
8.9° for the final orbit. We obtained, in this example, an elliptic orbit transfer, with 
eccentricity (eT) 1.9391 x 10-2, semi-major axis (aT) equal to 12037.40 km, inclination 
(iT) 0.4144°, argument of the periapsis (ωT) 2.7983° and longitude of the ascending 
node (ΩT) equal to 358.5698°. The magnitudes of the necessary increments for the 
transfer are ∆V1 = 8.6000 x 10-3 km/s for the first impulse and ∆V2 = 1.7273 x 10-2 km/s 
for the second impulse. Consequently, the total impulse (∆VTOT ) is 2.5873 x 10-2 km/s. 
The true anomalies of the points of application of these impulses are, for the first 
impulse: φA = 185.0000° (measured in the initial orbit) and φ1T  = 5.6320° (measured in 
the transfer orbit); for the second impulse they are: φ2T = 153.4278° (measured in the 
transfer orbit) and φB = 330.0000° (measured in the final orbit). The velocity parameter 
CT is 5.7555 km/s. In the work of. Biggs (1978), this same transfer requests a total 
impulse of 0.02210 km/s. In Schulz (1997) we found 0.02222 km/s. We noticed that the 
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result of this study (∆VTOT  = 0.025873 km/s) differs a little from the values obtained in 
the other two studies. This can be explained by the discretization of the orbits used in 
this work. 

Case 2 (Elliptic - Elliptic non-coplanar) 

In this example, we made all the elements to change, except the longitude of the 
ascending node, that is equal to 0° for both orbits. The semi-major axis varied from 
31650 km to 42200 km. The eccentricity of the initial orbit is 0.1 and for the final orbit 
it is 0.2. The inclination and the argument of the periapsis are both zero for the initial 
elliptic orbit, and they are 30° and 45°, respectively, for the final orbit. The transfer 
orbit obtained has semi-major axis of 35773.9244 km, eccentricity 0.1518, inclination 
25.4711°, longitude of the ascending node 5.0000°, argument of the periapsis of 
91.6139° and parameter velocity of 3.3772 km/s. The total impulse requested by the 
transfer is 1.9659 km/s, being the magnitude of the first impulse equal to 1,5638 km/s 
and the second equal to 0.4021 km/s. The true anomalies of the first transfer point, 
measured in the initial and transfer orbits, are, respectively, 185.0000° and 88.3861°. 
The true anomalies of the second transfer point, measured in the transfer and final 
orbits, are, respectively, 238.9566° and 290.0000°.  

Case 3 (Elliptic - Elliptic non-coplanar)   

The difference between this case and the previous one is the fact that all the elements 
are varied. The values for the initial elliptic orbit are: semi-major axis: 9567 km, 
eccentricity: 0.1, inclination: 30°, longitude of the ascending node: 45°, argument of the 
periapsis: 60°. The Keplerian elements of the final orbit are: semi-major axis: 12756 
km, eccentricity: 0.3, inclination: 54°, longitude of the ascending node: 14°, argument 
of the periapsis: 345°. For this transfer, the first impulse has magnitude 1.9165 km/s and 
it is given in the point of true anomaly  255.0000°, measured in the initial orbit. In the 
second point, the increment has magnitude 1.9804 km/s and it is applied with an angle 
of 160°, counted in the final orbit. The total impulse is 3.8969 km/s. The true anomalies 
of the transfer points, measured in the transfer orbit are 14.6913° for the first impulse 
and 151.9871° for the second impulse. The velocity parameter of the transfer orbit is 
5.6968 km/s. The inclination angles, longitude of the ascending node and argument of 
the periapsis of the transfer orbit are, respectively: 39.0084°, 31.9211°, 311.1353°. The 
semi-major axis and the eccentricity are 13263.9488 km and 0.0272.  

Case 4 (Transfer to a Molniya Orbit)   

In this example a transfer to a Molniya orbit is made, starting from an initial orbit close 
to it. The values for the initial elliptic orbit are: semi-major axis: 25000 km, 
eccentricity: 0.7, inclination: 60°, longitude of the ascending node: 0°, argument of the 
periapsis: 270°. The Keplerian elements of the final orbit are: semi-major axis: 26600 
km, eccentricity: 0.75, inclination: 63.4°, longitude of the ascending node: 0°, argument 
of the periapsis: 270°. A constraint of allowing the impulses to occur only for true 
anomalies of the satellite between 90° and 180° both in the initial and final orbit is 
included, to show this important capability of the method developed. For this transfer, 
the first impulse has magnitude 0.3188 km/s and it is given in the point of true anomaly  
115.0000°, measured in the initial orbit. In the second point, the increment has 
magnitude 0.0709 km/s and it is applied with an angle of 180°, counted in the final 
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orbit. The total impulse is 0.3897 km/s. The true anomalies of the transfer points, 
measured in the transfer orbit are 114.8083° for the first impulse and 179.8553° for the 
second impulse. The velocity parameter of the transfer orbit is 5.6337 km/s. The 
inclination angles, longitude of the ascending node and argument of the periapsis of the 
transfer  orbit are, respectively: 63.4087°, 1.7703°, 269.3527°. The semi-major axis and 
the eccentricity are 26904.5252 km and 0.7302. 

CONCLUSIONS 

We developed, implemented and tested a numerical algorithm that calculates minimum 
fuel maneuvers between two Keplerian orbits that use a bi-impulsive propulsion system 
to do the required maneuver. This algorithm can be used for planar and non-planar 
maneuvers. It is an extension of a method developed by Altman and Pistiner, that was 
developed to solve the problem of transfers between two fixed points in space. All 
equations used are derived and explained in some detail. Several tests were made, with 
four of them shown in detail. They shown the applicability of the method. 
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