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Abstract: The Global Positioning System is a 
powerful and low cost means to allow 
computation of orbits for artificial Earth satellites. 
Normally the task is carried out off-line using 
Batch Least Squares methods for orbit 
determination of satellites with an onboard GPS 
receiver. Usually, pseudo-range measurements 
taken from the GPS receiver are available to the 
orbit estimation algorithm. In this work, recursive 
least squares methods are studied, considering the 
conventional Kalman form, UD Kalman form, and 
sequential Givens rotations. The main aim here is 
to implement these routines and perform 
comparisons between the algorithms. The study 
case is the satellite Topex/Poseidon which carries 
onboard a GPS receiver which measurements are 
freely available through Internet. The work 
pinpoints the differences of implementation 
between the Kalman form, UD Kalman form, and 
the less conventional orthogonal transformation 
via Givens rotations. Simulations were carried out 
processing real data from the satellite 
Topex/Poseidon and the algorithms were 
compared to each other in terms of speed of 
convergence, accuracy and computer burden.  
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1. INTRODUCTION 
 

The problem of orbit determination consists 
of estimating parameters values that completely 
specifies the body trajectory in the space, 
processing a set of information (measurements) 
from this body. 

The Global Positioning System is a powerful 
and low cost means to allow computation of orbits 
for artificial Earth satellites. The Topex/Poseidon 

(T/P) satellite is an example of using this system 
for space positioning. 

Usually, the iterative improvement of the 
position parameters of a satellite is carried out 
using the least squares methods. On a simple way, 
the least squares estimation algorithms are based 
on the data equations that describe the linear 
relation between the residual measurements and 
the estimation parameters. 

The standard Kalman form is a recursive 
algorithm which allows the state and the state 
error covariance matrix estimates, through a 
sequential form. The factorization methods are 
based on the errors covariance matrix 
factorization. Such methods involve factorizations 
with no square roots and have numerical 
properties very superior than the normal methods.  
 
2. LEAST SQUARES METHODS 

 
Parameters estimation aims at estimating 

things that are constant along the estimation 
process. It is necessary a set of measurements to 
shape the relation between these measurements 
and the parameters to be estimated. 

One of the most used parameter estimator is 
the least squares algorithm. Basically, the 
algorithm minimizes the cost function of the 
residuals squared [1]. The recursive least squares 
algorithms, when applied to parameters estimation, 
presents two advantages: avoids matrix inversion 
in the presence of uncorrelated measurement 
errors; and needs smaller matrices, which means 
less need of memory storage. 
 

2.1 Kalman Form 
 

In the Kalman form, the equations to 
implement recursive least squares are given by: 



• Kalman Gain: 
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where H is the matrix relating measurements to 
parameters to be estimated, R is the measurement 
error covariance matrix, and y is the measurement 
vector. 

Although the normal equations produce a 
simple and straight implementation of the least 
squares estimation methods, these can carry out a 
deficient numerical stability, in the event of bad 
conditioned estimation problems [2]. For solving 
this deficiency, alternative formulations were 
developed, based on QR factorization methods. 
The Givens rotation [3] is a method for solving 
least squares problems [4] through orthogonal 
transformations.  
 

2.2 Recursive Least Squares Using 
Sequential Givens Rotations 
 

The Givens rotations are used when it is 
fundamental to cancel specific elements of a 
matrix. The full transformation generically can be 
given by: 
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where R is triangular. At each step the 
orthogonalization of the H matrix is performed 
(producing a transformed measurement vector d 
and r) and the results are stored to the next set of 
measurements. At the end the final solution is 
computed. See details in [2, 4]. 
 
3. KALMAN FILTER 
 

3.1 Standard Kalman Filter 
 

There are two differences between the least 
squares solution and the standard Kalman filter 
solution: this can account for dynamic noise on 
the dynamic state model; and this is an estimator 
with real time characteristics. The standard 
Kalman filter has two stages: time-update and 
measurement-update [1, 5]. 

The time-update formal equations are: 
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where kx  and kP  represent the state and the 
covariance updated for the instant k. 

And the measurement-update formal 
equations are: 
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where kK  is the Kalman gain and kx̂  and kP̂  
are the state and the covariance updated for the 
instant k.  
 

3.2 UD Fatorization 
 

This technique consists of the covariance 
matrix P factorization such that: 
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where U is an  upper triangular matrix, and D a 
diagonal matrix. 

The characteristics of the UD algorithm are: it 
is a square root like algorithm; it has precision 
properties of square root algorithms; and it is 
almost comparable, considering speedy and 
number of computations, to the standard Kalman 
filter [5, 6]. 
 
4. RESULTS 
 

The test conditions used real pseudo-range 
measurement data from T/P satellite, gathered by 
the onboard GPS receiver, at 1993/11/18, with 
selective availability (SA) on. 

For the recursive least squares estimator via 
Givens rotations, the period of analysis covered 
two hours of data (about one orbital period of T/P); 
and for Kalman filter like estimators, it was 
considered a period of only 300s, which will be 
explained later. 

Figures 4.1 to 4.6 show residuals of pseudo-
range measurements and errors in position 
behavior for the three estimators. Table 4.1 shows 
the minimum and maximum values of residual of 
pseudo-range and errors in position, again for the 
three algorithms here studied. 

The recursive least squares via Givens 
rotations method manifested very nice 
performance during a long interval of time 
(7200s). Meanwhile, for the standard Kalman 
form and UD form, in the short interval tested, the 



residuals decreased, which indicates convergence 
if the measurements were processed for a larger 
interval of time. Nevertheless, even in such a short 
interval of 300s, the position error increased 
tremendously, meaning that the estimators did not 
converge numerically. Users of the Kalman filter 
call this phenomenon as divergence, in which the 
statistical consistency between residuals and state 
estimates are not achieved. 
 
 

Evolution of residual on time for Recursive 
Least Square Methods via Givens Rotation 
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Figure 4.1 – Residual of pseudo-range, through Givens 
methods. 

 

Evolution of error in position for Recursive Least 
Square methods via Givens Rotations
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Figure 4.2 – Errors in position, through Givens methods. 

 

Evolution of residual on time for the Standard 
Kalman Form 
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Figure 4.3 – Residual of  pseudo-range, through standard 

Kalman form. 
 

Evolution of error in position on  time for 
Standard Kalman Form
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Figure 4.4 – Errors in position, through standard Kalman 

form. 
 

Evolution of residual on time for UD Kalman Form
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Figure 4.5 – Residual of pseudo-range, through UD 

Kalman form. 
 



Evolution of error in position on time for UD 
Kalman Form
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Figure 4.6 – Errors in position, through UD Kalman form. 
 
  

Estimator Parameter Initial Condition Final Condition Nº Iterations
Recursive Residual (min), m 75,784 -10,683

Least Residual (max), m 102,282 11,891
Square Error (min), m 4,113

Error (max), m 10,047
Standard Residual (min), m 75,962 -52,392
Kalman Residual (max), m 95,769 89,041

Filter Error (min), m 120,387
Error (max), m 133,576

UD Residual (min), m 75,962 -81,799
Kalman Residual (max), m 95,769 94,072

Form Error (min), m 51,637
Error (max), m 167,253

6

more than 400

more than 400

 
Table 4.1 – Comparison table between  pseudo-range 

residuals and errors in position for the three estimators. 
 
 
5. CONCLUSIONS 
 

Although the technological progress have 
established the state estimation techniques via 
Kalman filter, in the parameters estimation 
application, when a lot of measurements are 
estimated for a long time, the recursive least 
square methods (here, via orthogonal Givens 
rotations) appears more powerful and with better 
numerical precision than the equivalent Kalman 
form (Standard and UD). 

The Kalman form, in the two presented 
versions, yielded misleading estimates and 
statistics, primarily because they did not converge. 
On the other hand, the recursive Givens estimator 
shows that the dynamics is well modeled and the 
computational program well formulated, with 
attained convergence in few (6) iterations. 

The most important fact to conclude is: the 
three estimators are very good and powerful, 
when applied to the right problems. The recursive 
least squares method via Givens rotation is very 
efficient in cases of parameters estimation, when 
there is the processing of a lot of measurements 

and for a long period of time; whereas standard 
Kalman form and UD form are better in cases of 
state estimation, in real time. 
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