COLUMN GENERATION APPROACH FOR THE POINT-FEATURE

CARTOGRAPHIC LABEL PLACEMENT PROBLEM

Abstract

This paper proposes a column generation approach for the Point-Feature
Cartographic Label Placement problem (PFCLP). The column generation esl lnas

a Lagrangean relaxation with clusters proposed for problems modeled byctonfl
graphs. The PFCLP can be represented by a conflict graph where sgedree
positions for each label and edges are potential overlaps between |labeisgs).
The conflict graph is decomposed into clusters forming a block diagonal maitnix
coupling constraints that is known as a restricted master problemP}RiN a
Dantzig-Wolfe decomposition context. The clusters’ sub-problems aitar sinthe
PFCLP and are used to generate new improved columns to RMP. Thimeppras
tested on PFCLP instances presented in the literature providing immabake times
better solutions than all those known and determining optimal solutmnsoime

difficult large-scale instances.
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1. Introduction

The cartographic label placement problem is an important taskutomated
cartography and Geographical Information Systems (GIS). Labelgey information
about objects (or features) in graphical displays like grapheores, diagrams, or

cartographic maps (Wolff, 1999).

Features can be points (Cities), lines (Railways) or df&tases). However, the point-
feature labeling is considered a hard problem to be solved intamated process,

and has consequently received more attention by researchalfgkd Strijk, 2006).

One of these problems can be described as placing point labedsiefiped positions
generating a map without overlaps (See Figure 1). In thatliter, this problem is
known as the Point-Feature Cartographic Label Placement problédbRpPland has

been shown to be NP-Hard (Formann and Wagner, 1991; Marks and Shieber, 1991).
Thus, exact techniques are not common and metaheuristics/heudisticnate the

solution process (Wolff and Strijk, 2006).

Figure 1 - An example of a map with some overlapping labels (sesva)r

In PFCLP, each point has a list of candidate positions whbsdsl@dan be placed.

This list is defined according to a cartographic standardizaiChristensen et al.,

1995). Figure 2 (a) shows 8 candidate positions for a point, wherautinders

indicate the cartographic preferences in an increasing order.

Figure 2 - Set of 8 candidate positions for one point (Christensen 4085b).



Placing labels in candidate positions can generate overlap8i¢ts) compromising
the map visibility. Thus, due to these potential overlapsF@UP with N points can

be represented through a graph{V,E}, whereV is a set of the candidate positions
(vertices) anckE a set of edges representing overlaps or conflicts. FiguresB¢s a
conflict graph of the example shown in Figure 3(a). This exarhake four points
(districts at Espirito Santo State — Brazil), each ortd wicandidate positions. The
candidate positiowvs has potential conflicts with positions, v», v4 andvs; v4 has
potential conflicts withvy, Vs, V3, Vs andve; and so on. Figure 3(c) shows a solution
composed by, Vs, Vo andvys that is optimal for this problem because it does not

present overlaps between labels.

Figure 3 - Candidate positions (a), conflicts graph (b) and an optimatisnl(c).

Starting from this conflict graph representation three diffeapproaches are usually
considered for PFCLP. The problem can be considered as a Maxmdempendent
Vertex Set Problem (MIVSP) (Zoraster, 1990; Strijk et al., 2088)a Maximum
Number of Conflict Free Labels Problem (MNCFLP) (Christeretesl., 1994; 1995)
and as a Minimum Number of Conflicts Problem (MNCP) (Ribeiro bactkna,
2006a; 2006c). In all these approaches, the optimal value teféhe number of
points in the final solution whose labels are not conflicting. H@nethe constraints

requiring the labeling of a point are treated differently.

Figure 4 — Clusters provided by a conflict graph of a map labelioglpm on 250

points. Adapted of Strijk et al. (2000)



Besides, the conflict graph generates clusters of candidatgopssfRibeiro and
Lorena, 2006a). For example, Figure 4 shows a conflict graph geshénrat problem
with 250 points where each one has four candidate positions. The bldides/e
represent the maximum independent set (Strijk et al., 2008)eé#sy to see that this
graph is sparse and presents well-defined clusters of candiddtenso&ee stippled
lines). Ribeiro and Lorena (2006a) relax in a Lagrangean wayedhges that are
connecting the clusters rising to sub-problems that are indepgndehted. This

relaxation was called Lagrangean relaxation with ctagteagClus).

Taking into account the idea behind the LagClus, this paper presectdumn
generation approach for the PFCLP. The original graph is partitiomecdlusters
forming blocks of constraints and the edges that are connectingusters form
coupling constraints that are all used in a Restricted Mastdridin (RMP). This
column generation based on clusters was tested upon instances propoled in t
literature and their results were successful compared tivthbest ones known. It
provides better solutions than all those reported in the literaturreasonable

computational times.

The structure of the paper is as follows. Section 2 has fairbview of the PFCLP.
Section 3 presents the Lagrangean relaxation with clustensthdgtmain steps. The
column generation approach for the PFCLP is presented in SectioecdonS5

presents our computational results and the final remarks aenpee in Section 6.



2. Literature Review

The Maximal Independent Vertex Set Problem (MIVSP) presensubstantial
research considering algorithms and heuristics in differentstieSpecifically
considering the MIVSP as a PFCLP, Zoraster (1986, 1990 and 1991) ftadhula
mathematically the PFCLP working with conflict constraiatel dummy candidate
positions of high cost if the points could not be labeled. He pleposed a
Lagrangean relaxation for the problem and obtained some computatisnis$ @n
small-scale instances. Strijk et al. (2000) proposed new matlwaformulations

and examined a Tabu Search algorithm, obtaining interesting refsultgheir
instances. The authors explored some kind of constraints that aren la®wut
constraints, presented previously by Murray and Church (1996) and Moon and

Chaudhry (1984).

The Maximum Number of Conflict Free Labels Problem (MNCFLB} wxamined in
several works. Christensen et al. (1994; 1995) proposed an ExhaSsiareh
Approach that alternates positions of the labels previously positiotmédd a better
solution. Christensen et al. (1995) also proposed a Greedy Algaitkdna Discrete
Gradient Descent Algorithm. These algorithms have diffictdtyescape from local
maxima. Hirsch (1982) developed a Dynamic Algorithm of label repulsion, where
labels in conflicts are moved trying to remove all conflicternér et al. (1997)
applied a Genetic Algorithm with mask such that if a label ionflict, the changing

of positions is allowed by crossover operators.

Yamamoto et al. (2002) proposed a Tabu Search algorithm for the MN@fat



provides good results compared to other methods from the lieré&8uhreyer and
Raidl (2002) applied Ant Colony System but the results were netesting when
compared to the ones obtained by Yamamoto et al. (2002). Yamamotooesrdh L
(2005) developed an exact algorithm for small instances of theRPRad applied the
Constructive Genetic Algorithm (CGA) proposed by Lorena and Fui2@al) to a
set of large-scale instances. The exact algorithm wasedpplinstances of 25 points
and the CGA was applied to instances up to 1000 points, providing tesitéts than

Yamamoto's Tabu Search.

Although the MNCFLP presents several different algorithrhgjoes not have a
mathematical formulation like the model proposed by Zoraster (1$8dyever,
almost all heuristics proposed for solving the MNCFLP uses thiiatagraph as a

base for their mechanism.

The PFCLP, considered as a MIVSP or MNCFLP, can genenaje tonflict graphs
that become hard to deal with it. Wagner et al. (2001) presentgupamach to reduce
the conflict graph provided by a PFCLP. The authors proposed theseto reduce
the size of the conflict graph without altering the set of optspaltions. Moreover,
they combined these rules with heuristic yielding near-optiwolatisns. These rules
are presented bellow:
» If p has a candidate positigp without any conflicts, declang to be part of
the solution, and eliminate all other candidates (sfee Figure 5(a));
» If p has a candidate positignthat is only in conflict with somey, andg has a
candidate position; (j # K) that is only overlapped ky (I # i), then adgy and

g to the solution and eliminate all other candidatep @ind q (see Figure



5(b));

» If p has only one candidate positipnleft, and the candidates overlapping
form a clique, then declang to be part of the solution and eliminate all
candidates that overlap (see Figure 5(c)).

These rules are applied exhaustively. After eliminatingradiclatep;, we must check

recursively whether the rules can be applied in the neigbbdrofp;.

Figure 5 —Rules to reduce the conflict graph (Wagner et al., 2001).

Considering now the PFCLP as a MNCP, Ribeiro and Lorena (2006a;) 20dé=
proposed two models based on integer linear programming and aksgrangean
heuristic that have presented the best-known solutions in thetureréor the
instances proposed by Yamamoto et al. (2002). The second formulationgutdpos
the authors reduces the number of constraints generated bysthenddel. This

formulation is described bellow.

N R
V(MNCP) = Min Wi Xi + Y Vi 1)
i=1 ]=l d:[:“
Subject to:
R
D'x; =1 Oi=1.N (2)

=
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Xj 1 X and yje 0{03} Oi=1.N
0j=1.P (4)
CDCij

Where:

N is the number of points to be labeled & the set of candidate positions
of pointi;
* X Is a binary variable such &SN andj/.P;;
* w; is the cartographic preference assigned to eacklidste position. It
allowed us to prioritize some candidate positionsl@scribed in Figure 2(b);
* §;j is a set of index pairgk,t):k>i of candidate positions such that has
potential conflict withx;;
* Cj is a set of all points that contain candidate gpwss in conflict with the
candidate positio®;; and
* Vic is a conflict variable between the candidate pwsik; and the point
CLLCj:c>i.
Constraint (2) ensures that each point must beddbeith one candidate position.
Constraint (3) ensures that if vertices with patdrtonflicts are chosen to compose
the solution, the objective function described gu&tion (1) will be penalized. And

Equation (4) indicates that all variables in thedelare binaries.

In an opposite way, there are some models wheréabi®ds can move around of its
feature. They are known as slider models (Doddalet1997; van Kreveld et al.,
1998; Klau and Mutzel, 2000; 2003), but the presemrk does not take into account

sliding.



3. Lagrangean Relaxation with Clusters (LagClus)

The LagClus (Ribeiro and Lorena, 2006a; 2006b; 2D@5a stronger relaxation that
can be useful for several theoretical and practiaeje-scale problems. The first
application of the LagClus was performed on poe#tiire instances. Later, Ribeiro
and Lorena (2006b) applied this relaxation on p#édlading instances obtaining good
results for instances that are considered diffifarlia Lagrangean relaxation. Besides,
the authors proposed a column generation for ttedti@m using the cluster relaxation
idea. Another interesting application was perfornoedwoodpulp stowage context
(Ribeiro and Lorena, 2005). This problem considtarcanging items into holds of

dedicated maritime international ships. Recentlg/r€ et al. (2006) applied the
LagClus to uncapacitated facility location instapeoviding better bounds than the

ones presented in the literature for a set ofdiftiinstances.

For the PFCLP, the best solutions provided by LagQises a point graph instead the
original conflict graph. Figure 6 shows an exampleere the original conflict graph
(b) is obtained from problem (a). The original drdp transformed in a point graph
collapsing the cligues and a graph partitioningristia is applied (Figure 6 (c)).
Starting from (c), the cliques and the originalgraare restored (d). At the end, the
edges with terminations in different clusters (&3 eelaxed in a Lagrangean way

generating small sub-problems that are independsalved (f).

Therefore LagClus follows these steps (Ribeiro lam@na, 2006a):

i. Apply a graph partitioning heuristic to divid@ into P clusters. The PFCLP

can be written through the objective function dedinn (1) subject to (2)-(4)



where the conflict constraints (3) is now dividedoi two groups: one with
conflict constraints corresponding to edges intuesters and other formed by
conflict constraints that correspond to edges ccinmg the clusters.

ii. Using distinct non-negative multipliers, relaxa Lagrangean way, the conflict

constraints corresponding to edges connectingltisters.

iii. The resultant Lagrangean relaxation is decosepointo P sub-problems and

solved.

Figure 6 - Partitioning the conflict graph. (Ribeiro and Loag 2006a).

Observe that the constraints (2) are not relaxedagpear in clusters, so all relaxed
solutions are feasible to PFCLP. Thus, Ribeiro &ndena (2006a) also used an
improvement heuristic that receives a relaxed swiubbtained during a subgradient

algorithm, and tries to improve it.

Ribeiro and Lorena (2006a) also performed experimguartitioning the original
graph, but the best solutions were found partitigrthe point graph. For more details,

see Ribeiro and Lorena (2006a; 2006c¢).

4. A Column Generation Approach for the PFCLP

The model (1)-(4) can be rewritten using the deawsitpn of the original graph into

clusters. LetP be the number of clusters obtained after the timaniing of the conflict

graphG=(V,E). Thus,G is partitioned inG, (V,,E, ), G, (V,, E,).....G; (V5. E;) and set



=]
E= E\UEp i.e E represents a set of all edges®ivhose ends lie in different
p=1

clusters.

Thus, the PFCLP formulation (1)-(4) can be rewnites:

P
V(PFCLP) = Min{z (xP +yP) +§] (5)
p=1
Subiject to:
— __ x_l ]
B, 0 . 0 Of-."
0 B, 0 o <|~R (6)
[x
0 0 B O 31
L 1y

xPandyPO g OpO{L....P} vy isavectorof variables{01} (7)

Where:

« xPis a vector of decision variables (candidate pmrs#j assigned to clustgy

« yPis a vector of variables assigned to conflict cansts defined by (3) with
vertices in the same clusters;

. yis a vector of variables assignedMoconflict constraints in (3) with vertices
in different clusters;

« Ayis a matrix that represents the variable coeffisiessigned to clusterand

also appearing at thd conflict constraints defined by (3) correspondiadt;



. A; is a matrix that represents the coefficients of ¢beflict variables inter

clusters (See Figure 7);

« BPis a matrix (block) representing the variable fio&nts assigned to cluster
p;

* R s vector with coefficients of the right-hand siofleconstraints defined in (2)

and in (3) for eactE, and E; and

» ~are the relational operators =®rdepending on the respective constraint.

Figure 7 illustrates how to proceed with the foratidn above. Note that the relaxed
constraint (shaded rectangle) is obtained from comigosition of the constraints in

original formulation that presents vertices in elifint clusters.
Figure 7 — An example to illustrate variables and matricesodel (5)-(7)

So, relaxing in a Lagrangean way the constrainthegged by matrices
ApEIp=L...,I3, the model (5)-(7) can be decomposed iﬁtosub—problems. Sub-
problemp is defined as:
V(PFCLP), = Minl(1+ Ag,u)xp +yP:xPandyP EIQp] (8)
Where:
« uORM are the Lagrangean multipliers assigned to kheines (relaxed

constraints) of the matri&,; and

*  Qis the set of constraints embedded in clyster

Therefore, the LagClus can be written as:



=) M
v(L,PFCLP) =ZV(PFCLF’)p +(1- %r,u)g_sz,um ©)
p=1 m=1

This formulation was implicitly used by Ribeiro abdrena (2006a).

The classic implementation of a column generatippr@ach uses a coordinator
problem and sub-problems. This coordinator problaiso known as Restricted
Master Problem (RMP), guides the sub-problems bir tfual variables for searching

new columns that introduce new information in tH¢mR

Thus, applying the Dantzig-Wolfe decomposition (Dis) a linear relaxation (LP) of

the blocked constrained problem (5)-(7) generdteddllowing RMP:

V(PFCLP,,)» = Min{i SUXP+yP)A, +y (10)

p=1 j0J,

Subiject to:

P 1P
2.2 [Ap[y} +y<R (11)
p=Lj0J,

D> Ap =1 OpO{L....P} (12)
j0J,
Ajp20 OpO{L..PrandjOJ, (13)

Where:

* Jjpis adecision variable that represents the extreoirg j0J,; and

« J,is aset of extreme points of the cluster (sub-jerobp.

The P sub-problems for this column generation approaghthe same shown in



Equation (8), however, the Lagrangean multipliers eeplaced by theM dual

variables ) corresponding to constraints (11):
V(PFCLP), = Min[(1+ AEA)XF’ +yP:xPandyP EIQp] Op=1..P (14)

For the RMP, a new column provided p§ cluster is an improving column if

V(PFCLP), = B, <0, where B, is a dual variable associated with & convexity

constraint (12).

The LagClus presented in Equation (9) can alsadbeirmed directly from RMP model

(10)-(13) using the formulation:

[ M
V(LaPFCLP) = ) V(PFCLP) , + (1- A\;TA)y_/—ZRmAm (15)
p=1 m=1

Figure 8 describes a diagram of our column germrasipproach. Note that the

number of new columns is used as a stopping camdiso the column generation
stops when no more columns present negative redoosd. After the end of the

column generation all decision linear variablessprg in RMP are transformed to
binaries and a binary RMP is solved. This procedize be considered a heuristic
method for solving the PFCLP. A Branch & Price mdare could be used to search
optimal solutions. See the recent survey (Des®siad Libbecke, 2008f column

generation for a comprehensive understanding.

Figure 8 — A diagram of the column generation approach



5. Computational Results

The computational tests are performed on instapcegosed by Yamamoto et al.

(2002) that are available http://www.lac.inpe.br/~lorena/instancias.hifihe set of

instances is composed by twenty five instance®%0r100, 250, 500, 750 and 1000
points The code in C++ and the tests were done in a ctanpith Pentium 1V (3.33
GHz) processor and 1.0 GB of RAM memory. As done Ziyaster (1990),
Christensen et al. (1995) and Yamamoto and Lor@085), for all problems the
cartographic preferences were not consideredloivadl us to compare our results to
the ones presented in literature considering tls¢ @openalty equal to 1 for all the
candidate positions, where the number of thoseipnosiis equal to 4n;;=1 £=1...N

andzj=1...4.

The sub-problems were solved by CPLEX 10 (ILOG, &0énd the partitioning of

conflict graphs were obtained by METIS (Karypis damar, 1998), a well-known
heuristic for graph partitioning. Given a conflgtaph and a pre-defined number

of clusters, METIS divides the graph in® sub-graphs of approximately same size
minimizing the number of edges whose ends lie ffedint clusters of the partition.
Before divide the conflict graph and test the calugeneration approach, we applied

the technique proposed by Wagner et al. (20018daae the graph.

Table 1 presents results using CPLEX 10 with foatiah (1) — (4) upon reduced
conflict graphs. The first column represents therage number of points followed by
CPLEX's average lower and upper bounds. The foedlumn presentGAP =

(Upper Bound - Lower Bound)/Upper Bound*1Ofllowed by the number of



instances optimally solved, average elapsed tinse@onds, average number of labels
in conflict and the average proportion of free laldeund. This last column was used

to compare the results with the literature.

These results were found running CPLEX until th&tances are solved or reach an
out of memory condition. CPLEX solved all instane@th 100, 250 and 500 points.

For instances with 750 points, it solved 14 amoBgaf8d zero instances with 1000
points. It shows that even with reduced graphdaimses with 1000 points are hard

instances to be solved.

Table 1- Results using CPLEX 10 with reduced conflictpdra

Table 2 reports the main average results provigetthd column generation approach.
We considered in this paper the same number ofeckisised by Ribeiro and Lorena
(2006a): 2 clusters for instances with 25, 100, 268 500 points, 10 for instances
with 750 points and 25 for instances with 1000 ®iifhe sub-problems are solved

by CPLEX.

The initial pool of columns is composed of random@nerated solutions followed by
an improvement heuristic. The algorithm used toegate these initial columns is

shown in Figure 9.

The columns in Table 2 represent:

* Problem — Number of points;



Best solution inserted in RMP — Best solution itestin RMP provided by a
improvement heuristic (see Figure 9);

Initial number of columns — Initial number of colaminserted in RMP. This
number is calculated b * Initial _Solutions , wherelnitial_Solutionsis the
initial number of solutions generated by algoritthown in Figure 9. Note that

a solution is decomposed inB small solutions to be inserted in RMP;

Initial RMP — Represent(PFCLR,,, ) p With the initial pool of columns;

Final number of columns — Number of columns aftee £nd of column
generation process;

Final RMP — Represe(PFCLR,,, ), Wwith the final pool of columns;

Timey (s) — Elapsed time until the end of column genengbrocess;

ILP — Final RMP has all decision variables transfed to binaries and solved.
This column represents the objective function vdtuend for the binary RMP
(See Figure 8);

Time; (s) — Elapsed time using binary RMP;

# of instances solved — Number of instances oplynsalved by the column
generation approach;

Labels in conflicts — Number of labels in conflicksund in binary RMP
solution;

Proportion of free labels (%) — Proportion of flebels found in binary RMP

solution.

Figure 9 —Algorithm used to create and insert initial coltsmm RMP.



Table 2— Average results using column generation approach

The results reported in Table 2 are very promisifige column generation inserts a
small set of new columns into RMP: 52 new colunmaverage for the instances with
1000 points. The computational times varied fro®@00o 84.04 seconds for column
generation process and from 0.00 to 2.64 secondsofeing the binary RMP, so in

the worst case, the column generation approacls @B&®&8 seconds to be concluded.
Looking at the best solutions initially insertedarRMP, we can note that they are
worst than the Final RMP and ILP, showing that calumn generation really inserts

good columns into RMP.

As our coefficients in objective function (6) aretdger, we considered that an
instance is optimally solved if the difference beén solutions of binary RMP and
final RMP is less than 1, besides for all instantd®s lower bound provided by
column generation (column final RMP in Table 2) ev¢he same of the LagClus
defined by equation (15). Thus, this column genemaapproach found the optimal
solutions for all instances with 100, 250, 500 &80 points. For the instances with
1000 points the column generation found 10 optiswlitions against zero optimal

solutions of the direct CPLEX application to (1{(4}.

Table 3 reports the main results found in this payel compares them to the ones

provided by CPLEX. Note that the column generat@pproach surpasses CPLEX for

the hard instances (750 and 1000 points).

Table 3— Main results found with CPLEX and column generaapproach



The best results found in this paper were comptrelde best-known of the literature
described in works of Yamamoto and Lorena (2009) Ritbeiro and Lorena (2006a).
Table 4 reports the average proportion of free ltalfeund using our column

generation approach and the best-known resultsdfaurthe literature. Once more,
note that those approaches have different objectiosvever the column generation
found better results to PFCLP than all those repbrin the literature. The

computational times are not compared since the atatipnal tests were performed

in different machines.

Table 4 -Comparison with the literature

6. Conclusions

This paper presented a column generation appraaché point-feature cartographic
label placement problem. This method provided gawmiutions in reasonable

computational times, improving the best-known sohs in the literature.

This column generation is an interesting technaug can be used for solving several
related problems that can be formulated on condiiaphs. It takes in advantage the
conflict graph partitioning to form a special matraical formulation with coupling
constraints of edges with vertices in differentstdéus and block constraints (clusters)
that are all considered in a restricted master Ipmob The Dantzig-Wolfe
decomposition generates independent sub-problerustdcs) that are used to

introduce new improving columns for the restrictedster problem.



Despite our column generation provides interestesplts, there are aspects to be

explored. In this paper, we performed a staticifgaming whose graph is partitioned

directly into P clusters. However, this partitioning task can berfgrmed

hierarchically. This feature can be very usefuptovide good solutions and to define

the ideal numbep .

We also believe that a heuristic or metaheuristin be used for solving the sub-
problems instead CPLEX. This is an important noezaise there are several
algorithms that find optimal solutions for smalbgz problems in reduced
computational times, so a hybrid column generatian be a useful approach for
several large-scale problems. Finally, we think tnd@ranch & Price procedure can

be easily designed using the column generatiornoapprproposed in this work.
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Figures

Figure 1 - An example of a map with some overlapping labede @rows)
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Figure 2 - Set of 8 candidate positions for one point (Gkrisen et al., 1995).
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points. Adapted from Strijk et al. (2000)
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TFCLP
Formulation (5)-(7)

Applying Dantzig-Wolfe
decomposition (D)

PEFCLPry
Formulation {103-(13)

A

Generating the initial pool
of columns for the Restricted
Master Problem (BR3P with

algorithm described in Figure 9

Solving RIIP

Solving sub-problems
defined in EMP (14)

Are there columns
with negative reduced
cost?

Selving binary RWE

End

Inserting new columns in RMWP

Figure 8 —A diagram of the column generation approach.



Mgorithm Insert solutions in RMP(Initial Solutions)

fié Let:

fo- Random_ Generation Solution(l) be a function that generates
Iy & random solution for N points

fAo- Ohject Function(Zol) be the objective function described in
I Equation (1)

/¢4 - Insert_in RMP(5ol) be a function that insert Sol in

Iy restricted master problem

1 Best Solution ¢ =
2 For i sol=1 To Initizl Zolutions Do

3 Sol « Random Generation Solution(M)
Bkp Sol &« Sol
e oL IMPROVEMENT HEURISTIC
4q Found New Solution « true
5 flurrent « 0bject Function(Bkp Sol)

Bkp Current « flurrent
6 While Found New Solution Do
i Found New Solution « false

8 For i = 1 To ¥ Do

'9 Current Candidate Position = Bkp Sol [i]
Ell:l For ¥jeP; Do

111 If j== Bkp Sol [i] Then Continue
112 Bkp Sol [i] + 3

113 If (Object Function(Bkp Sol)<fCurrent) Then
14 flurrent « Object Function(Bkp Sol)
515 Found New Solution « true

16 Dest Neighbor « J

17 Changed Point « i

118 End If

119 End For

120 Bkp Sol [i] ¢ Current Candidate Position
21 End For

122 If Found New Solution Then

123 Bkp Sol [Changed Point] « Best Neighbor
124 End If

125 End ¥While
26 If l[fC‘urrent<ka_Current]jlnd[fCurrent!=Best_501ution] Then

127 Sol + Bkp Sel

28 If {flurrent < Best_Solutionj Then
529 Best Solution « Fflurrent

130 End

31  End

32 Insert in RMP(5o0l)
33 End For

Figure 9 —Algorithm used to create and insert initial colugmm RMP.




Tables

Table 1— Results using CPLEX 10 with reduced graphs.

Reduced Conflict Graph

Lower | Upper | GAP |. # of Time La_bels Proportion
Problem Bound | Bound | (%) instances (s) in of free

solved conflicts | labels (%)

100| 100.00| 100.00| 0.00 25 0.00 0.00 100.00
250| 250.00| 250.00| 0.00 25 0.01 0.00 100.00
500| 500.84| 500.84| 0.00 25 0.14 1.68 99.67
750| 757.10| 758.92| 0.24 14| 5517.12 17.60 97.65
1000| 1004.87| 1042.88| 3.64 0| 4504.52 83.12 91.69




Table 2— Average results using column generation approach

Column Generation

Integer RMP

- — . # of .| Proportion of
Problem Best Solu'qon Initial Initial Final Time, instances Label_s n fref)e labels
Inserted in Number of RMP Number of (s) solved conflicts (%)
RMP Columns Columns
100 100.04 2000 100.00f 2002 00 0.0825 0.00 100.00
250 250.84 2000 250.000 2002 0.1 25 0.00 100.00
500 504.00 2000 502.84) 2003.04 8400 0 | 25 1.64 99.67
750 785.52 10000 765.16 10013.4(Q 48 258.9.48 25 17.50 97.67
1000 1123.24 25000 1048.97 25052.44 2.64 10 76.04 92.40




Table 3 —Main results found with CPLEX and column generaggproach

Problem Approach Lower Bound | Upper Bound C(BO'/AO‘ ;D # ofsglisgces Time (s) I::itl‘)l?lliit? frergi?ggg?: ((3/];)
CPLEX 100.00 100.00 0.00 25 0.00 0.00 100.00

100 Column Generation 100.00 100.00 0.00 25 0.08 00 0. 100.00
CPLEX 250.00 250.00 0.00 25 0.01 0.00 100.00

250 Column Generation 250.00 250.00 0.00 25 0.1p 00 0. 100.00
CPLEX 500.84 500.84 0.00 25 0.14 1.68 99.67

500 Column Generation 500.84 500.84 0.00 25 0.16 64 1. 99.67
CPLEX 757.10 758.92 0.24 14 5517.12 17.60 97.65
750 Column Generation  758.92 758.92 0.00 25 14.96 17.50 97.67
CPLEX 1004.87 1042.88 3.64 0 4504.52 83.12 91.69
1000 Column Generation 1037.56 1039.04 0.14 10 86.68 76.04 92.40




Table 4— Comparison with the literature

Proportion of free labels (%)

Algorithm Problems

100 250 500 750 100(
Column Generation Approach 100.00 100.00 99.67 7M7.692.40
LagClus (Ribeiro and Lorena, 2006a) 100.00 100{0®.6B | 97.65 91.42
CGAgest(Yamamoto and Lorena, 2005) 100.00 100.00 99.60 1097,) 90.70
CGAnverage (Yamamoto and Lorena, 2005) 100.00 100.00 99.60 .8M6| 90.40
Tabu Search (Yamamoto et al., 2002) 100.00 100.09.309 | 96.80 90.00
GA with masking (Verner et al., 1997) 100.00 99.9898.79 95.99 88.96
GA (Verner et al., 1997) 100.00 98.40 9259 82.38 5.76
Simulated Annealing (Christensen et al., 1995) aoo} 99.90 98.30 92.30 82.09
Zoraster (Zoraster, 1990) 100.00 99.79 96.21 79.Y8%3.06
Hirsh (Hirsh, 1982) 100.00] 99.58 95.7Q 82.04 60{24
3-opt Gradient Descent (Christensen et al., 1995) 00.0D | 99.76 97.34 89.44 77.83
2-opt Gradient Descent (Christensen et al., 1995) 00.0D | 99.36 95.62 85.60 73.37
Gradient Descent (Christensen et al., 1995) 98.645.479 | 86.46 72.40 58.29
Greedy Algorithm (Christensen et al., 1995) 95.1P 8.88 75.15 58.57 43.41




