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Intermittent nature of solar wind turbulence near the Earth’s bow shock:
Phase coherence and non-Gaussianity
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The link between phase coherence and non-Gaussian statistics is investigated using magnetic field data
observed in the solar wind turbulence near the Earth’s bow shock. The phase coherence index C4, which
characterizes the degree of phase correlation (i.e., nonlinear wave-wave interactions) among scales, displays a
behavior similar to kurtosis and reflects a departure from Gaussianity in the probability density functions of
magnetic field fluctuations. This demonstrates that nonlinear interactions among scales are the origin of inter-

mittency in the magnetic field turbulence.

DOI: 10.1103/PhysRevE.75.046401

Solar wind is a good laboratory for the study of collision-
less magnetohydrodynamic (MHD) turbulence (see, e.g., [1]
and references therein). In particular, the intermittent nature
of turbulence is one of the fundamental problems for under-
standing the complex behavior of fluids [2,3] and other dy-
namical systems [4]. Solar wind intermittency can be char-
acterized by the probability density functions (PDFs) of
velocity (or magnetic) field fluctuations over a range of
scales. For large scales the PDFs are approximately Gauss-
ian. As the scale decreases, the tails of the distribution gradu-
ally become fatter [5].

Since MHD turbulence is governed by nonlinear MHD
equations, the turbulent fields may display non-Gaussian
fluctuations where the phases among scales (e.g., phases of
the Fourier modes) are not random. In some previous studies
of MHD turbulence the so-called random-phase approxima-
tion has been adopted to describe random-phase mixing
among scales [6]. However, in solar wind turbulence coher-
ent structures such as solitonlike waves are often observed,
especially near the planetary bow shock [7]. Therefore, in
real situations, the description of MHD turbulence as a su-
perposition of random-phase fluctuations may not be valid
and a finite-phase correlation among scales is to be expected
due to nonlinear wave-wave interactions. This paper investi-
gates the link between non-Gaussianity (intermittency) and
phase correlation (nonlinear interactions) among scales in so-
lar wind turbulence. Previous works have revealed the non-
Gaussianity of PDFs in the solar wind as a signature of in-
termittency, but whether this departure from Gaussianity is
due to nonlinear wave-wave interactions or not has not been
clearly demonstrated yet. In analytic modeling and numerical
simulations of intermittent turbulence based on a set of de-
terministic equations, it is naturally expected that the depar-
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ture from Gaussianity is due to nonlinear interactions [2]. In
contrast, the observational data from solar wind are an ad-
mixture of deterministic signal and stochastic noise. In such
a case, the demonstration of finite phase coherence is re-
quired to ascertain the nonlinear origin of non-Gaussian fluc-
tuations. In the present work, we quantify the degree of non-
linear interactions in solar wind data using a phase coherence
index and demonstrate its relation with kurtosis (flatness) in
the structure function.

A central assumption of the Kolmogorov 1941 (hereafter
K41) theory is the self-similarity of the random velocity field
at inertial-range scales. This is related to the absence of
phase correlation among scales. Since such random-phase
fluctuations have self-similar hierarchical structures, the
length of fluctuations, which is related to fractal dimension
[8], will be long. In this paper, the length of discretized mag-
netic field fluctuations is defined using the Euclidean dis-
tance S=3V (B, ,~B;)>+(t;,,~1,)>, where B and t corre-
spond to the discretized magnetic field fluctuations (the
measured time series) and time, respectively, 7 denotes the
time lag between two points in the time series, and N is the
number of data points. On the other hand, if there exists
finite phase correlation among scales due to nonlinear wave-
wave interactions, then the length of phase-correlated fluc-
tuations becomes shorter than the random-phase fluctuations
because of the increase of two-point correlations. Thus, the
degree of phase correlation among scales can be evaluated in
terms of S. To this end, we apply the technique of phase
coherence (PC) index C,(7) [9]. From the original magnetic
field data (ORG), we make two surrogate data. First we de-
compose the observational data into the power spectrum and
the phases by using the Fourier transform. Next we randomly
shuffle the phases, but keep the power spectrum unchanged,
and from these two sets of information in Fourier space, we
perform the inverse Fourier transform to create the phase-
randomized surrogate (PRS) [10]. Likewise we can make the
phase-correlated surrogate (PCS), in which the phase differ-
ences are all made equal. The three data sets ORG, PRS, and
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PCS share exactly the same power spectrum, while their
phase distributions are all different. Each length for ORG,
PRS, and PCS data is measured by a simple two-point dif-
ference S;(7)=3Y,|B;,,~B,, instead of the Euclidean dis-
tance to reduce the computational time. Then the PC index is
defined as follows:

_ SPRS(T) - SORG(T)
Sprs(7T) = Spes(7)

The calculation of Spge(7) is performed using an average
over 100 realizations of the phase shuffling. If the phases
among scales for the original data are completely random,
then C,(7)=0, while Cy4(7)=1 if the phases are completely
correlated.

Furthermore, higher-order statistics is also useful to char-
acterize the intermittent nature of fluctuations when the
PDFs depart from a Gaussian distribution. In particular, the
fourth-order moment (kurtosis)

Cy(7) (1)
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is an important quantity to evaluate the degree of intermit-
tency, where the brackets (-) denote the ensemble average of
fluctuation u;=B;,,—B; and o indicates its standard devia-
tion. If K(7) is zero, the PDFs are Gaussian distributions,
while if K(7)>0, the PDFs show a sharp peak around its
mean and fat tails.

We analyze two time series of the total magnetic field
data, B, observed upstream and downstream of the Earth’s
bow shock by the GEOTAIL satellite, sampled at 16 Hz
(from 18:00 UT 8 October to 04:00 UT 9 October 1995).
Since this data were observed in the declining phase of the
solar cycle 22 and did not include any special events with
high-speed flows and coherent structures originating from
the Sun—e.g., coronal mass ejection [12]—it can be treated
as a moderate state of MHD turbulence near the Earth’s bow
shock. In order to separate the data into upstream and down-
stream regions, the velocity and density data are used with
the bow shock model introduced by Fairfield [11]. Each time
series has 16 384 samples, which is appropriate for evalua-
tion of higher-order moments (at least up to sixth order) [13].
Slow trends are subtracted from the original data using a
quadratic function. In Fig. 1, the scale dependence of the
magnetic field fluctuations oB;=B;,,—B; for three different
scales (7=1, 4, and 16 s) is shown for the upstream (top
panel) and downstream (bottom panel) time series. For both
upstream and downstream, as the scale becomes smaller, the
fluctuations become more intermittent.

The intermittent characteristics of the fluctuations 6B can
be visualized in their PDFs. The fluctuations are normalized
as 6b=(6B—(6B))/ o, where the brackets denote the en-
semble average of 6B and o denotes the standard deviation.
Figure 2 presents the PDFs for the upstream (left column)
and downstream (right column) fluctuations for 7=1, 4, and
16 s (circles), superposed by a Gaussian PDF (solid line).
For both upstream and downstream fluctuations, as the scale
7 decreases, the PDF deviates from the Gaussian distribution.
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FIG. 1. Scale dependence of the magnetic field fluctuations
OB(t)=B(t+ 7)—B(t) near the Earth’s bow shock for three different
scales (7=1, 4, and 16 s). The top panel corresponds to the up-
stream case, and the bottom panel corresponds to the downstream
case.

Thus, the smaller the scale, the shorter the interspike inter-
val, implying stronger intermittency. This is in agreement
with previous works on the behavior of PDFs obtained from
solar wind turbulent fluctuations [1,5]. For the upstream fluc-
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FIG. 2. The scaling behavior of the PDFs for the magnetic field
fluctuations in the upstream region (left) and the downstream region
(right) of the Earth’s bow shock. The circles denote the PDFs for
magnetic field fluctuations. The solid lines denote Gaussian PDFs.
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FIG. 3. Scaling exponent £, of the gth-order structure function
obtained by ESS fitting for the upstream and downstream data sets.
The dashed line corresponds to K41 ({,=¢/3) linear scaling. The
error of the least-squares fitting is indicated by the bars.

tuations, from 7=16 s to 7=1 s, the behavior of the PDFs is
similar to that of the downstream data except for its asym-
metry. This indicates that the dynamics in the upstream and
downstream regions of the Earth’s bow shock is quite differ-
ent. The fat tail for the negative fluctuations of the upstream
PDF at 7=1 s suggests that low-frequency large-amplitude
MHD waves being convected toward the Earth steepen with
time as the satellite approaches the bow shock. This fact has
been widely discussed in the literature. For example, the
steepened waves, shocklets, and short large-amplitude mag-
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netic structures (SLAMSs) often observed upstream of the
Earth’s bow shock are believed to result from a nonlinear
evolution of low-frequency large-amplitude MHD waves as
the solar wind convects towards the Earth’s bow shock [14].
For the downstream case, such steepening has not been ob-
served.

In order to quantify the deviation from a Gaussian
distribution, the Kolmogorov universality theory is used. To
this end, the structure function for each moment, Sq(T)
=(|B;;,~B/|?)~ 9, is normalized with respect to the
third-order structure function—i.e., extended self-similarity
(ESS) [15]. Figure 3 shows the scaling exponent of the nor-
malized gth-order structure function S,(7) ~ [S5(7)]% where
{(q) = alq)/ a(3) and the dashed line stands for the K41 scal-
ing, a(q)=q/3. For both cases, a deviation from the K41
scaling is clearly shown in the figure. In agreement with Fig.
2, the deviation from the Gaussian curve is due to the in-
crease of the rate of occurrence of small- and large-
amplitude fluctuations in both regions.

The results from Figs. 1 and 2 indicate that both data sets
consist of an admixture of Gaussian (large-scale) and non-
Gaussian (inertial range) fluctuations and display multifractal
features. The non-Gaussianity can be related to phase coher-
ence by computing the PC index. The profile of PC index for
the upstream region is shown as a function of 7 in the bottom
left panel of Fig. 4. The PC index increases monotonically
from 7~16s (c) to 7~1s (a) while it decreases for
7=<1 s. The range in which the PC index increases corre-
sponds, approximately, to a frequency range of from ~0.1();
to ~();, where (); denotes the local ion-cyclotron frequency
in the upstream region (approximately 1 Hz) [9]. In the up-
stream region, low-frequency MHD waves are excited
mainly by ion-beam instabilities. Once they reach finite am-
plitudes, they can evolve nonlinearly in the presence of in-
homogeneous spatial distributions of plasma. Such a nonlin-
ear evolution of MHD waves is closely related to the
appearance of a high-PC index region since the phase coher-
ence among scales is a manifestation of nonlinear interac-
tions. The decrease of the PC index for 7=1 s implies that

FIG. 4. Kurtosis (top panel) and PC index
(bottom panel) for the upstream and downstream

regions of the Earth’s bow shock. The arrows (a),

0.1

(b), and (c) correspond to scales 7=1, 4, and 16 s,
respectively.
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nonlinear interactions among scales less than 1 s become
weak due to energy dissipation processes such as Landau
damping. The top left panel in Fig. 4 shows the value of
kurtosis. There is a significant deviation from zero (Gaussi-
anity) around 7~ 1 s. This result is consistent with the value
of PC index. For 7=10 s, the PC index fluctuates around
0.1, while the value of kurtosis is also small. This indicates
that for large scales the nonlinear interactions are weak and
magnetic fluctuations are almost stochastic.

Recalling the results shown in Fig. 2, the variation of the
PC index clearly corresponds to that of PDFs. In the down-
stream case, the PC index increases monotonically from
~16 s (c) to the smallest scale in the bottom right panel of
Fig. 4. This result indicates that in the downstream region the
range of nonlinear wave-wave interactions (i.e., inertial
range) extends to scales smaller than the upstream region.
The value of kurtosis is shown in the top right panel of Fig.
4. One can see that the tendency of kurtosis is in good agree-
ment with that of the PC index. It has been reported that for
MHD scales, Alfvén ion-cyclotron modes or mirror modes
are dominant in the downstream region due to the ion tem-
perature anisotropy [16]. The nonlinear evolution of such
modes may be responsible for the phase coherence in the
downstream MHD turbulence.

Recall that the definition of the length S, corresponds to
the definition of the first-order structure function. Further-
more, for the PC index, we calculate the difference of the
length between the original data and the phase randomized
data (Gaussian distribution). The structure function is also
defined as S,(7)=fu?P(u)du, where u denotes the two-point
difference of fluctuations (absolute value) and P(u) indicates
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the probability density of u. Thus, the PC index indicates
how much the PDFs deviate from the Gaussian distribution
with the same mean and same variance as the original data.
On the other hand, kurtosis is related to the fourth-order
structure function, which also characterizes the departure
from Gaussian distribution (excess of large-amplitude fluc-
tuations). Therefore, the similarity between the PC index us-
ing the definition of first-order structure function and kurto-
sis can be naturally noticed.

In this study we established the relation between non-
Gaussianity of PDFs and phase coherence in intermittent
time series, based on the observational data of magnetic field
fluctuations near the Earth’s bow shock. We found that the
behavior of the phase coherence index is similar to that of
kurtosis, which demonstrates that intermittency is produced
by the phase correlation among scales due to nonlinear
wave-wave interactions. Although we only analyzed one set
of data in this study, we have performed a more exhaustive
data analysis of the approach described in this paper using
various data sets for both weak and strong states of MHD
turbulence in space as well as for atmospheric turbulence. In
addition, we have verified that the same technique is valid
for the intermittent time series obtained from the numerical
solutions of several nonlinear wave equations. These results
will be published shortly. Hence, we are confident that our
technique is robust and applicable to nonlinear data in gen-
eral.
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