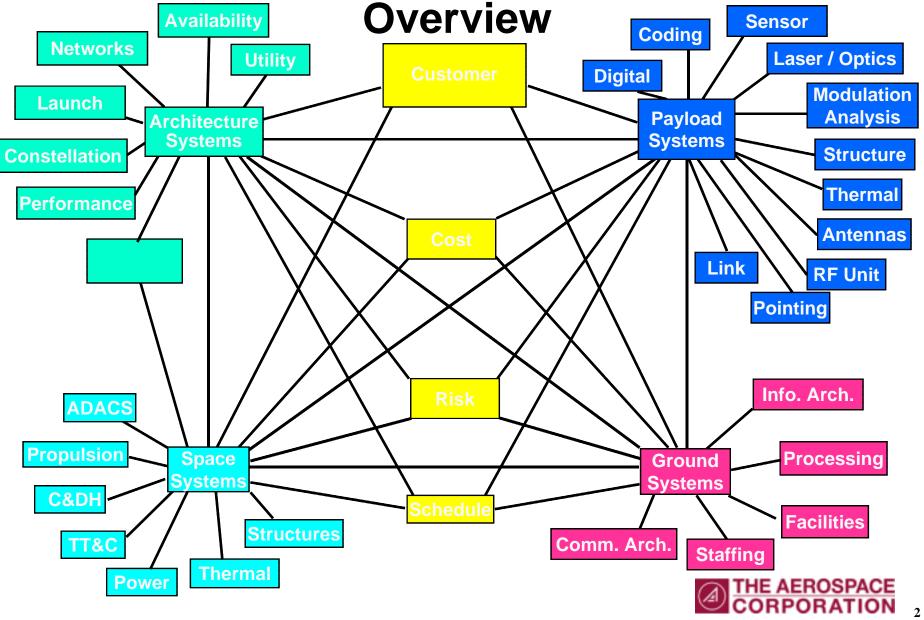
Concurrent Engineering of Space Systems

International Society for Productivity Enhancement

CE 2007, São Jose dos Campos, Brazil

16-20 July 2007


Dr. Wanda M. Austin Senior Vice President The Aerospace Corporation

Co-Authored by William Emanuelsen

(c) 2007 The Aerospace Corporation

- Concurrent Engineering at The Aerospace Corporation
- **Complex Product Development**
- The Concept Design Center
 - **Risk Mitigation**
- **Results of Concurrent Engineering**

Concurrent Engineering: A Definition

- **Concurrent Engineering:** "A design team working together to improve efficiencies in product development"
 - Faster development cycles
 - Better quality products
 - Lower total cost

Sounds like faster, better, cheaper... ...but there is an unstated assumption here which makes the process work...

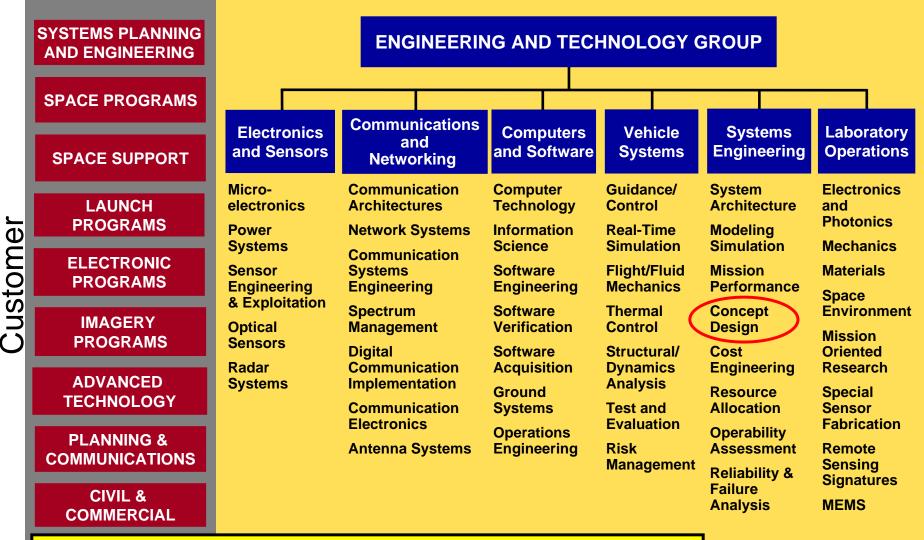
Example of successful Concurrent Engineering

- NASA Apollo 13 Anomaly: from lunar module to lifeboat
 - Time critical integrated design solutions developed within hours

• Examples that Concurrent Engineering could improve:

- Urban planning avoiding traffic congestion
 - Design, build, and maintain continually evolving network that functions well for all its users better transport of goods and people, fewer disruptions/delays
- Emergency response to tsunami, hurricane, earthquake, etc.
 - Pre-planned coordination of relief, recovery, and rebuilding efforts; timely placement of people, equipment, and donated goods

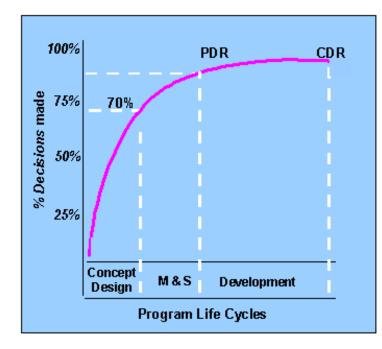
The Aerospace Corporation


- A California nonprofit corporation that operates a Federally Funded Research and Development Center (FFRDC) sponsored by the United States Air Force
- Space Stewardship Accountabilities:
 - Provide highly knowledgeable technical staff, available throughout the engineering development cycle
 - Apply broad technical expertise to assess and solve complex, multidisciplinary technical issues

Dedicated to Space Mission Success Supports All Phases of Program Acquisition

An Engineering Matrix Organization

A Matrix Organizational Structure Facilitates Concurrent Engineering


5

Complex Product Development

- Space systems are some of the most complex products ever devised
 - Drive for cutting edge performance
 - Integration of diverse subsystem technologies
 - Need for high quality materials, manufacturing procedures, workforce
 - Long design and procurement cycles
 - Severe consequences of failure
- Successful products start with good designs
- Most projects use some combination of design methodologies
 - Top down: start with a vision
 - Bottom up: start with some pieces
 - Sequential: develop the pieces, then integrate
 - Concurrent: plan to integrate the pieces
- Concurrent design, as part of a complete concurrent engineering approach, is vital to success

Conceptual Design & Program Life Cycle

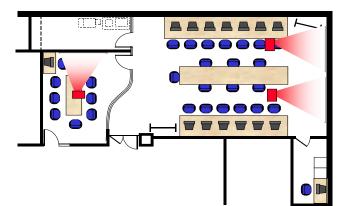
70% Of All Decisions Affecting Life Cycle Costs Are Made During the Concept Definition Phase^{1,2}

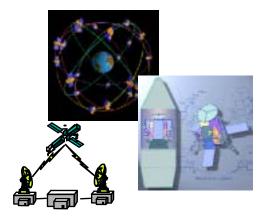
¹ Wade, D.I. and C.S. Welch. 1996. "Spacecraft Manufacturing Implications for Volume Production Satellites." Paper No. IAF-96-U.4.08, presented at the 47th International Astronautical Congress, Beijing, China.

²"The Affordable Acquisition Approach Study (A3 Study), Part II, Final Briefing," Headquarters Air Force Systems Command, Andrews AFB, MD, 1983.

Conceptual Design...

- Helps define requirements via performance, risk, & cost trades
- Identifies internal element coupling
- Examines impact of new technologies
- Assesses business cases/models
- Supports RFP generation, source selections, & independent assessments
- Helps determine block upgrade strategies


The Concept Design Center (CDC)

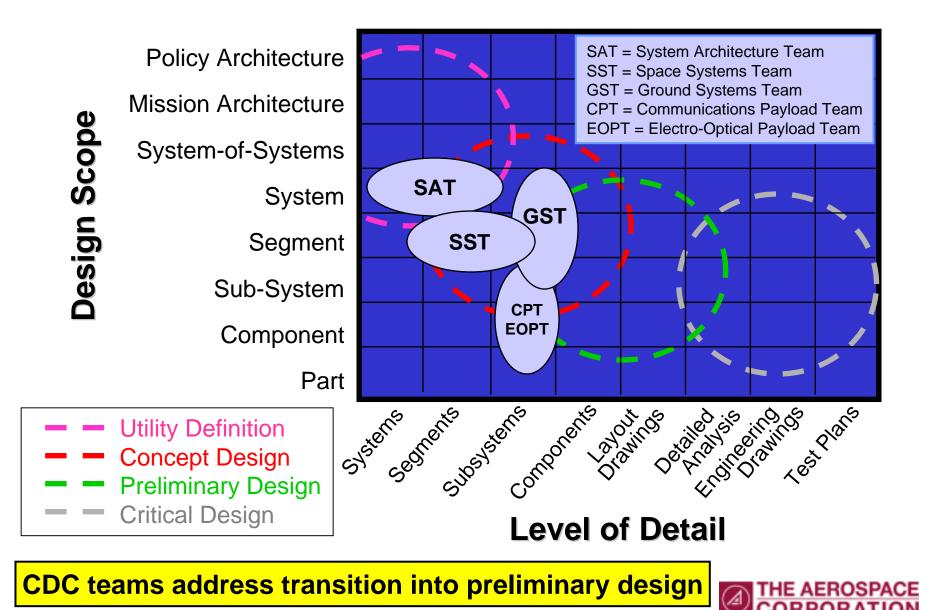

Aerospace's Primary Example of Successful Concurrent Engineering

<u>**Teams</u>** provide full breadth & depth of required expertise</u>

- Experience across many, many space programs
- Can include regional site experts as needed
- 26 avg. years of experience since bachelor degree*

Facilities enable the customer to interact efficiently with a team of experts

<u>**Process</u>** integrates team & design tools to produce quality results quickly</u>



Process Results	
Time to perform a study	\mathbf{V}
Cost of a study	\mathbf{V}
Trade space exploration	合
Consistency	合

* Based on Aerospace MTS population

CDC Teams vs Design Cycles

9

Concept Design Center - Evolution & History

Time	Facility	Tools	-	Teams (# of Studies)				Studies		Funding Trend			
			SST	SAT	EOPT	GST	СРТ	per Year		Customer		Corporate	
1990	Ad Hoc	Early CEM											
1991								Ĺ					
1992		Linked CEM	1		Ea	ly Year	s:						
1993						o forma							
1994					t	racking)					
1995													
1996					P								
1997	CDC Created		6					6					
1998			10	2	2			14					
1999			10	2	1			13					
2000			8	1	0	2		14					
2001	CDC Moved		10	1	1	2		16					
2002			16	3	3	2		24					
2003		IDEA	18	6	2	8		34					
2004			17	1	1	1		20					
2005	CDC Upgraded		25	0	2	3		30					
2006	V		24	8	0	3	1	36					
2007	From anywhere to anywhere		13	2	0	3	0	19 YT	D				
Future													7

SST = Space Systems Team SAT = Space Architecture Team EOPT = Electro-Optical Payload Team

GST = Ground Systems Team

CPT = Communications Payload Team

CEM = Concurrent Engineering Methodology IDEA = Integrated Data Exchange Architecture

Investments in Concurrent Design Tools have resulted in greater productivity, lower cost to design

Types of Success in the CDC

Design Validation

- CDC design validated contractor design very close to what will fly

Requirements Validation

- Rapid exploration of configurations provided better insight into system needs; requirements rewritten to be unambiguous and verifiable
- "Path Pruning"
 - Killing off unfeasible ideas early, saving program cost that would be needed to explore or develop them
- Launch Cost Reduction
 - Careful orbit selection to optimize SV duty cycle and power sizing reduced the initial estimated SV mass, allowing spacecraft to fly on smaller launch vehicle

Technical Improvements

- Optimized constellations and replenishment strategies to save costs
- Developed alternate SV transfer orbit designs, increasing available SV mass for payloads or propellant

• Team Building

- Accelerated customer education early-on, program personnel are still learning about their system-to-be, and will carry early knowledge and decisions with them
- Sharpen skills for other activities such as source selection or cost estimation

Concurrent design provides customers with timely, integrated, lower risk solutions

The Unstated Assumption: Risk Management

Risk is multidimensional and must also be managed concurrently

- Four variables in project management:
 - Schedule
 - Performance
 - Cost
 - Risk
- Need to define risk rigorously and cap it at an acceptable level
- If you cap the other three variables, risk grows

General Methods to Reduce Risk

- Plan out the effort among stakeholders
- Leave time to fail early in the program
- ✓ Nail down requirements
- ✓ Perform scenario planning
- ✓ Ensure technology is or will be available
- ✓ Have margins for schedule, cost, performance, resources
- \checkmark Use models, prototypes, and simulations
- Have alternative sources
- Perform non-stakeholder reviews
- Improve production models
- Implement continuous customer feedback cycles

Defined concurrently during Conceptual Design

Concurrent Engineering and Risk Mitigation Strategies

✓ Know what the risks are

- Consistent and complete risk identification

✓ Implement executable plans and off-ramps

- Early review of risks, and handling plans
- Preserve margin for unknowns
- Limit risk exposure

• Track aggregate risk & keep risk constant or decreasing

- Continuous monitoring & review against milestone targets
- Take off-ramps or modify requirements as necessary
- Independent reviews of program risk level
- Actively allocate resources

• Integrate with other engineering areas

- Reliability
- Safety
- Parts, Materials and Processes
- Mated to WBS to show program hot spots

 Risk management strategies are further developed and defined during conceptual design activities

Key Ways Aerospace Manages Risk

• Develop disciplined mindset early in program development

- Aerospace standardized Mission Assurance Framework captures program risk management "To Do's" from historical baselines
- Include entire Customer/Aerospace/Industry team
- Significant success demonstrated on EELV program
- Don't "catch up later"

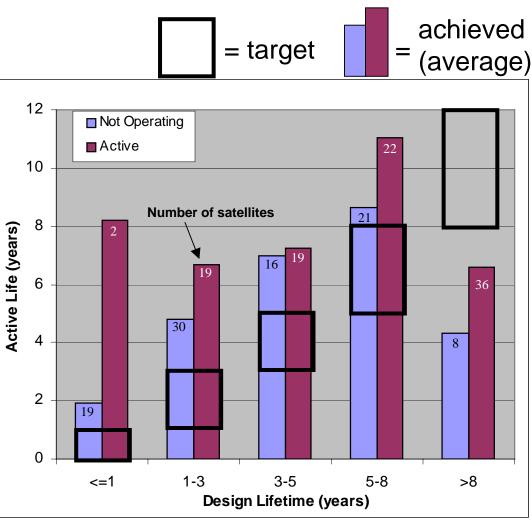
Establish environment that encourages problem reporting

- Weekly Watchlist shared across programs, where possible
- Broad dissemination of Problem/Failure Reports
- Formal lessons learned management

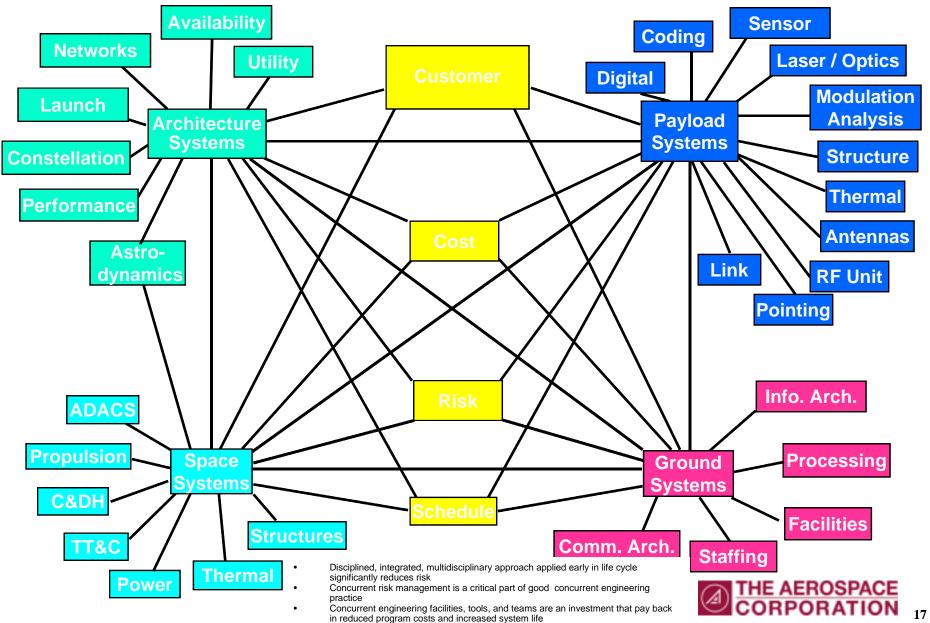
• Manage risk at a sufficiently senior level

- Lower levels trading mission success for cost and schedule increases risk
- Perform "What If" scenarios don't stop at the "obvious" quick fix

Government/Industry team manages risk incrementally


- Robust mission assurance tailored to program phase
- Use "buildup" process in design and test to identify and manage risk

Find and fix defects early, by using broadly based teams versed in concurrent methodologies


Results: Actual vs. Design Lifetime

- Analysis of U.S. civil and military satellites
 - 2005 Aerospace internal study
 - Using our Space
 Systems Engineering
 Database
- On average, most satellites live well beyond their original design life
- Satellites with >8 year design life launched too recently to accurately assess

Good concurrent engineering practices contribute to enhanced mission success

Conclusions

Backup

Selected CDC References

- "Modular Concurrent Engineering Models: Enabling Alternative Models in Conceptual Satellite Design", B.Lewis, J.Lang, R.Jolly, 2007 IEEE Aerospace Conference, 2007.
- "Next Generation Concurrent Engineering: Developing Models to Complement Point Designs", E.Morse, T.Leavens, B.Cohanim, C.Harmon, E.Mahr, B.Lewis, 2006 IEEE Aerospace Conference, Big Sky, Montana, March 4-11, 2006.
- "A Systems Engineering Tool for Small Satellite Design", A.McInnes, D.Harps, J.Lang, C.Swenson, 15th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, August 13-16, 2001.
- **"Concurrent Design at Aerospace",** P.Smith, A.Dawdy, T.Trafton, R.Novak, S.Presley, Crosslink, Winter 2000/2001.
- **"Scope vs. Detail: The Teams of the Concept Design Center",** J.Aguilar, A.Dawdy, 2000 IEEE Aerospace Conference Proceedings, March 18-25, 2000.
- "The Aerospace Corporation's Concept Design Center", J.Aguilar, A.Dawdy, G.Law, Proceedings of the 8th Annual International Symposium of the International Council on Systems Engineering, July 26-30, 1998.

