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This work analyses the effects of the Prandtl number on mixture fraction within reactive 
jets by using the integral method. The velocity and mixture fraction fields of plane and 
cylindrical jets in the laminar flow regime are determined. It is verified that the ratios of the 
thicknesses of the momentum and mixture fraction boundary layers obey a simple ordinary 
differential equation with a standard form, in all cases considered. Integration of this 
equation for several Re and Pr numbers indicates that the thickness ratio becomes, in 
general, approximately constant for distances not far from the injector. It is shown that 
mixture profiles and flame lengths can be significantly affected by differential diffusion of 
scalars and momentum. As expected, the scalar thicknesses are larger, equal or lower than 
the momentum thicknesses for Pr > 1, Pr = 1 and Pr < 1, respectively. 

Nomenclature 
a,c = constants 
di = diameter or width of injection 
u = streamwise velocity component 
ui = injection velocity 
um = centerline streamwise velocity 
v = normal velocity component 
F = fuel 
f = mixture fraction 
fm = centerline mixture fraction 
i = species or geometry 
x = streamwise coordinate 
r  = normal coordinate 
O = oxidizer 
P = product 
Pr =  Prandtl number αυ /=  
T = temperature 
Y =  mass fraction  
s  = oxidizer/fuel stoichiometric mass ratio 
α  = species diffusivity or thermal diffusivity 
ω  = ratio of boundary layer thicknesses 

Fw′′′  = fuel consumption rate per unit volume 
ΔH =  heat of reaction per kg of fuel 
δ = boundary layer thickness 
υ  =  dynamic viscosity  
ρ = mixture density 
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I. Introduction 
ree jets are important in many technological applications and in fundamental studies of inert and reactive flows. 
Experiments indicate that free jets can present self-similarity beyond 5 or 6 exit diameters from the injector and, 

consequently, distances, velocities, temperatures and mass fractions in the flow can be scaled up by characteristic 
length, velocity, temperature and species mass fractions, respectively. 

F 
More experimental data is available for the axisymmetric case, since it is easier to setup experimentally an 

axisymmetric jet than a planar jet, although more theoretical analysis is available for planar cases (Agrawal and 
Prasad, 2003, Bhat and Narasimha, 1996; Hussein et al., 1994; Wygnanski and Fiedler, 1969). 

The usual theoretical approach of free jets is to perform an order of magnitude analysis of the Navier-Stokes 
equations in the self-similar region. The boundary layer approximation is applied, allowing a significant reduction in 
the number of terms. The resulting terms are then scaled using the appropriate length, velocity, species mass fraction 
and temperature scales. Further, by invoking conservation of momentum, the streamwise variation of width, velocity 
and scalars can be obtained (Tennekes and Lumley, 1972, Schlichting, 1968). 

The theory of free jets with a review of theory and experiments was presented by Schlichting (1968), who 
obtained in 1933 the classical solutions for narrow jets issuing from small slits or holes. Toong (1983) extended 
Schlichting solution for a planar jet and solved the reactive problem considering the effects of compressibility and 
Prandtl number, Pr, i.e., the effects of differential diffusion of heat and momentum. 

The integral method has been used to obtain approximate solutions for the boundary layer equations, being 
especially useful when exact analytical solutions are not available. In general, Gaussian or polynomial similar 
profiles for the axial velocity and scalar fields are chosen to integrate the conservation equations and Pr = 1 is 
adopted. Steiger and Bloom (1963) applied the integral method, assuming polynomial profiles, to solve the 
momentum equations for 2D laminar jets and wakes. Kanury (1975) assumed linear profiles of velocity and 
temperature and used the integral method to obtain approximate solutions, for inert and reactive jets issuing from 
finite slits or holes, in planar and cylindrical geometries. 

The objective of this work is to analyse the effects of Pr on reactive jets, by using the integral method. The 
problem is solved for planar and cylindrical geometries, both in the laminar flow regime. The analysis is made for 
slits or holes of finite size, considering similar polynomial profiles of the velocity and scalar fields. Analytical or 
semi-analytical expressions are obtained for the velocity and mixture fraction in terms of Pr. It is shown that the 
ratio of the mixture fraction thickness to the momentum thickness in all cases obey a relatively simple differential 
equation with a standard form. Integration of this equation indicates that the mixture fraction profiles of reactive jets 
can be significantly affected by differential diffusion. 
 

II. Governing Equations and Boundary Conditions 
A single step chemical reaction is considered in the analysis: 
 
 1 kg F + s kg O  (1 + s) kg P +  ΔH  J/kg fuel (1)  
 
Assuming equal species and thermal diffusivities (Le = 1), the mass, momentum, species and energy boundary 

layer equations are given, respectively, by:  
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where n = 0, 1 for plane and cylindrical jets, respectively. Equations (4) and (5) can be combined, yielding: 
 

 ( )rr
n

r
n

x
n frvfrufr α=+  (6) 

 
American Institute of Aeronautics and Astronautics 

 

2



 
where 

 
( )

( )
,,

, , , , ,

( 1) 1

( 1) 1
F P OF O O F

F i O i F i F i O

s Y Y YsY Y Y T T HYf
sY Y T T HY s Y Y

∞∞ ∞

∞ ∞ ∞

+ + − −− + − + Δ
= = =

+ − + Δ + − −
  (7) 

 
The variable f  is called the mixture fraction and, usually, has values between 0 and 1. Boundary conditions for u 

and f  are 
 
 0,0, ===∞≤≤= rrrF fffxr δ  (8a) 
 
 Hr δ= , ∞≤≤ x0 , 0=== rrr uuu  (8b) 

 
 0,0,0 ==∞≤≤= rr fuxr  (8c) 

 
 ii uufdrx ==≤≤= ,1,20,0  (8d) 
 
 0,0, ====∞≤≤∞= rr ffuurx  (8e) 
 

where Fδ  and Hδ  are the mixture fraction and the momentum boundary layer thicknesses and di is the injector exit 
diameter of a round jet, or injector exit width of a plane jet. The boundary layer thicknesses are defined by the points 
where the longitudinal velocity are a small fraction, e.g., 0.1 or 1 %, of the centerline velocity. It should be noted 
that derivatives of Eqs. (3) and (6) with respect to r  can provide additional conditions at the boundary layers’ edges. 

Next, the mass, momentum and mixture fraction equations are integrated from the flow centerline to the jet 
boundary iδ  and to an arbitrary position iψδ  inside the boundary layer, with ψ ∈ [0,1]. This approach has been 
adopted previously by Moses (1968) and Kanury (1975). Similar velocity and scalar profiles are assumed and 
substituted into the integrated equations, yielding expressions describing the velocity and scalar fields. Some of 
these expressions will require the numerical solution of ordinary differential equations of a standard form.  

 

III. Integration of the Mass and Momentum Equations 
Equations (2) and (3) can be integrated in the interval r = (0,ψδH), yielding, respectively: 
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Polynomial profiles of velocities, satisfying boundary conditions given by Eqs. (8b-e), are considered to solve 

Eqs. (9) and (10):  
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where  is the velocity at r = 0. The polynomial coefficients, γ( )m mu u x= i, of order up to order k = 4 are shown on 
Table 1. It should be noted that polynomials of lower order do not satisfy all derivative conditions. Alternatively, 
linear combinations of the basic polynomials could be adjusted to experiments.  

 
American Institute of Aeronautics and Astronautics 

 

3



Table 1. Polynomial coefficients for similarity profiles up to 4th order. 

Pol. order γ0 γ1 γ2 γ3 γ4
1 +1 –1 0 0 0 
2 +1 0 –1 0 0 
3 +1 0 –3 +2 0 
4 +1 0 –6 +8 –3 

 
Using Eq. (11), the velocity u and its derivative at ψδΗ  are given, respectively, by 

 
 ( ) 4H mu cψδ = u  (12a) 
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Substituting Eq. (13b) into Eq. (9), yields: 
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and, for ψ  = 1, it follows that 
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Note that standard derivatives can be used, since um and δH depend only on x. Solving Eq. (10) for ψ = 1, gives 
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which indicates that the jet streamwise momentum is constant, a well-known classical result. Therefore,  
 

 ( ) 12 1 2 2 nn
m H i iu u dδ ++ = = constant = C (17) 

 
and 

 ( )
1

2 1n
H mC uδ +=  (18) 

 

 
American Institute of Aeronautics and Astronautics 

 

4



Solving Eq. (10) for an arbitrary position ψδΗ  inside the viscous boundary layer, yields 
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Then, substituting Eq. (18) into Eq. (19) and simplifying, it yields: 
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Consequently, um decays with distance from the injection hole or slit, with 1p = −  for a cylindrical jet and 

1 3p = −  for a planar jet, as already shown by Schlichting (1968).  It should be noted that c5 depends on ψ and n 
and that c5 > 0, since c3 < 0. A proper ψ  value can be also chosen to adjust to experimental data. At distances far 
from the injector, where the similarity solutions are valid, ( ) ( )5 Re 1ic x d >> , therefore, ( )5 Re pp

m i iu u c x d≅ , 

and 5
pc  indicates the decay rate of the centerline velocity for a given similar profile and for a given ψ  value. Figure 

1 shows the influence of ψ on 5
pc for plane and cylindrical jets, considering polynomial profiles of order up to 4. 

Kanury (1975) has found previously 5
pc  assuming ψ  = 0.5 and a linear profile.  

 
 

      
Figure 1. Effects of ψ  and polynomial order on 5

pc  for plane and cylindrical laminar jets. 
 
Substituting um into Eq. (18) it follows that 

 
 ( )2 32 n
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Therefore the width, 2δH, of a free circular jet grows linearly and the thickness of a plane jet increases with 2 3x .  
 

The spreading angle is given by  
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Re.  The normal velocity component is obtained from Eqs. (15), (20) and (21): 
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IV. Integration of the Mixture Fraction Equation 
Equation (6) for mixture fraction balance, can be integrated up to an arbitrary position inside the mixture fraction 

layer, r = (0,ψFδF), where ψ F ∈ [0,1], yielding: 
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Polynomial profiles were also considered to solve Eq. (23):  
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is a polynomial profile of mixture fraction, satisfying boundary conditions given by Eqs. (8a-e), with coefficients 

ii γκ ≡ . The ratio between the mixture fraction layer thickness and the viscous layer thickness is defined by 
 
 HF δδω =  (25) 

 
Substituting the polynomial profiles into Eq. (23) and making several mathematical manipulations, the following 

expression is obtained for the boundary layers thickness ratio:  
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V. Results 
Equation (26) was integrated for several Re and Pr numbers and for several ψ  = ψF values, using a stiff solver. 
Figure 2 shows the effects of polynomial order on ω for cylindrical jets, for Pr = 0.7 and Pr = 1.4. It is seen that 

the polynomial order does not affect significantly ω in both cases. 
Figure 3 shows the effects of ψF values on ω for a cylindrical jet and using a 4th order polynomial. It was found 

that a fourth order polynomial with ψF  = 0.074 fits reasonably well the experimental radial velocity profiles. 
Figure 4 shows the effects of Re on ω. It is seen that larger Re values increase ω values, and that, for Re > 100, 

ω has a constant value just after injection, and the jets become turbulent. 
Figure 5 shows the effects of Pr on ω. It is verified that ω is larger than unity for Pr < 1 and smaller than unity 

for Pr > 1, as expected. 
Since mixture fraction is affected by Pr, the stoichiometric mixture fraction and the flame length, which depend 

on reactants stoichiometry, will be affected as well.  
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Figure 2.  Effects of polynomial order on ω for cylindrical jets. 

 
 

  
Figure 3. Effects of ψF =ψ  on ω. 
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Figure 4. Effects of Re on ω. 

 

   
Figure 5. Effects of  Pr on ω. 

 

VI. Conclusion 
This work described an integral solution with polynomial profiles valid in the developed region for the reactive 

laminar jet problem, in terms of Re and Pr numbers, with integration up to boundary edges and up to arbitrary 
positions inside the viscous and mixture fraction boundary layers and to the boundary edges. It was verified a strong 
influence of Re and Pr on mixture fraction thickness and that fourth order polynomial profiles, integrated up to ψF  = 
0.074, yield the best results for the radial profiles. Other reactive jet characteristics, such as jet width, jet spread 
angle, flame lengths and shapes, and turbulent jets also can be analysed with this approach. 
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