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Combinations of power series and Fourier series are employed here
to study the stability of the solutions of the Joulin-Sivashinsky evolution
equations that describe the dynamics of cellular premixed flames near the
condition of extinction by heat loss. Regions of stability to space-periodic
pertuÍbations are determined, as are the distances between the boundaries of
these regions, when the perturbation has a wavelength that is a submultiple
of the wavelength of the cellular flame.
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I.  Introduct ion

The boundary-value problem defined by the Joulin-Sivashinsky
equations describes the dynamics of premixed flame fronts near the condition
of extinction by heat loss. Joulin and Sivashinskyl derived this system
under the restriction that the planar flame is unstable to cellular
perturbations. Joulin2 numerically integrated steady-state one-dimensional
versions of the problem, showing that there are solutions, corresponding to
cellular flames, that propagate steadily with rates of heat loss greater than
the maximum value for extinction of the planar flame. Recently, Sinay and
ìgVilliams3 proved analyticalty the existenõe of such solutions and solved the
one-space-dimension problem utilizing a combination of power series and
Fourier series. We shall refer to this combination as the power Fourier
series (PFS) algorithm.
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Let D be the thermal diffusivity and U the burning velocity of the
planar flame with Lewis numbeÍ Le = t having the maximum rat€ of heat
ioss. Use these variables to define length and time scales, and let ( and t be
correspondingly scaled space and time variables, respectively. If the flame-
front position (in units DIU) in a frame moving towards the fresh mixture
with velocity U is denoted by Q and a nondimensional flame temperature
decrement as rp, then the Joulin-Sivashinsky boundary-value problem is

0"+ l l v0 l2=Â0+V on Cl x IR,

\fÍ + V\r'VO = ̂ V - ̂ O + + (V2 + v) ( 1 )

o n â O

where v is the scaled heat-loss deviation paÍameter, O is a region in lR' or

R2, aOis its boundary, and â/àn stands for the derivative in the normal

direction. A detailed description of the physical meaning of the variables

can be found in Ref. 3. In that paper, solutions of the one-space-dimension

version of Eq. (1) were obtained in the form

0 = _ F r  +/ (o
(2)

V=_!r+s(o

where /(() and g((), which are periodic in ( with wavelength 2nlk, can be
represéntêd parametrically for each fixed k, in terms of a parameter ô, as
power series in ô with coefficients which are Fourier series in (. The scaled
velocity deviation p and the loss parameter v were also obtained as power
series in õ.

The purpose of the present paper is to describe some of the linear-
stability boundaries of Eq. (2) and their physical significance. To that end,
we first study the linear ìtability of plane flames, corresponding to õ = 0,
and then, using the same kind of power series and Fourier series employed in
Ref. 3, we determine transitions between regions of stability and instability.

II. Stabilitv of Planar-Front Flames

Linearizing the one-dimensional version of Eq. (l) and using Eq.
(2), we obtain

0t +/((,ft,ô)ô, = ôu * ú

rir" + gç((,È,õ)óç +.fç((,k,ô)úç = úçs -óçç + |(-u(õ) + s((,ft,õ))ìi, (3 )

â0=ôV=o
àn àn
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where the subscripts ( and t indicate partial derivatives with respect to the
corresponding variable and the functions,f((,k,õ), g((,k,õ), as well as the
paÍameteÍ p(õ), are series in õ given previously in Ref. 3.

Setting

Q=e* lcos<ot z*(()  + sinol t  a-(() ]

(4)

y = eh lcos rrn v*(() + sin rot v -(()]

and, further, transfor,ning the resulüng equations in the usual way, we
obtain a first-order system of ordinary differential equations of the form

where F is an 8 x 8 real periodic matrix of pnod ?nlk. It follows from
Floquet theo4y' úlat caresponding to any real fundamental solution matrix
X(() of Eq. (5), there exist a real periodic matrix P(0 of period 4nlk, and a
real constant mairix C, such Íhat

X(0 = r(0 exp((c) (6)

From the experimental viewpoint it is desirable fo establish the
stability of the cellular flames under perturbations by excitations that aÍe
periodic in space with wavelengths that are smaller than the dimensions of
the burner, or rather, exact submultiples of the wavelength of the cellular
flame. We shall thus concentÍate our study on the determination of the
conditions under which X in Eq. (6) is periodic; i.e., we shall seek values á =
á(ô), <o = <o(ô) for which Eq. (5) and therefore Eq. (3) with g, rir given by

Eq. (4) possesses a solution periodic in (, with period a multiple (or
submultiple) of 4nlk.

When ô = 0, Eq. (3) reduces to

0 0 , " = 0 0 , ç E + ú o

ú0," = ü0,ç( - ô0,çç - (t - t2)üo

(s)a
o'= a(

(7)

Here, the subscript 0 stands for õ = 0, and one nìust recall that fe = gs = 0,
whereas po = |(1 

- k2) (see Ref. 3).
Since Eq. (7) is a linear system of ordinary differential equations

with constant coefficients, we can assume, using the fact that we seek
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periodic solutions with period 4rl/c,

Qo=a exp(o t  + i fÇ ,  r i ro=a exp(o t  + i+ ( )  (8 )

where 6 = b + iÍD, b, and to. are real numbers, and m is an integer.
Substitution of Eq. (8) for 0o' Vo into Eq. (7) yields a homogeneous
algebraic system, which has a nontrivial solution if and only if

b z  +  l l  +  ( ú -  t \  k 2  l b  + m z  k 4  e - l )  -  < o 2  =  0-  ' -  ' 2  
4  

' 4  ( 9 a )

t r+2b.(+- t )o ' l to=o (eb)

It is easy to see that, for fixed m, the only possible solution of
Eqs. (9a) and (9b) is

o = 0

b = b * = + t - l L  +  ( ú - - D  k 2 É ' [ F t Y  + @  l ,  m >  0  ( 1 0 )

where the superscripts + of. bm correspond to the signs of the square root.
Straightforward calculations show that b6 = 0, á0 = k2 - 1 if Ê < 1

a n d  á d  = k 2 - l , b [ =  0  i f  r
bï=O,b;<A for al l  t ,  and f inal ly,  áfr  < 0 for al l  f r  and m > 3.
Correspondingly, we have the real solutions

( 1 1 )

with

[:)='*(i:)

) * '

( ï : ) = (
I

oA + ek)2
,ry {sintz4,l;

'We 
have thus established the linear stability behavior of plane

flames subject to perturbations that are periodic in space, with period
4nlmk. Since áf I Q, the known result is recovered, to the effect that the
solutions for õ = 0 are unstable to disturbances with period 4n/k. The
purpose of the next section is to study the solutions of Eq. (3) which are
analytic continuations in ô of Eq. (ll), and the functions à = á(õ), al = ro(õ)
for which these solutions exist and which reduce to Eq. (10) when ô = 0.
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bv*  +  (ov -+  gçu ;  + fçv i=v ie -u ie  +?r -U+g)v*  
e*b , )

b u- -  a u+ +fç u{ = uçç+ y-b y-
(L2c)
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III. periodic Solutions

Infioducing Eq. (4) for O, ü in Eq. (3), we obüain

b u+ + a u-  +fçu i  = uç i+ v*

b  u  + f ç u l =  u ç ç + v

b v  +  g ç u ç + f ç v ç = v e e _ u ç ç + ! < _ V +  g ) v

267

(IZa)

( 1 3 a )

( 1 3 b )

b  v _  _  ( D  y + +  g ç u {  + Í e  u {  v Ç = v r , ç _ u ç ç + }  t - u  +  g ) v _  
( l 6 d )

It fo'ows from the.results of the previous section that the systemin Eqs. (l2a-t2d), has a periodic solurion ór period 4n/(mk) when õ = 0 ifand only if b = bÃ*{,? = O. Let us ̂ ro*. for a momení Ú,ut, ror rorn"fixed t, u* =í,r* =iis a solution 
"f 

Éq.- (l2a) and(l2b) with ro = 0andõ in a neighborhood of zero. Then u- =ì,-ri = i is ,Iì"-;'r;1";ion or rqs.(12c) and (l2d) with co = 0 and õ in the same neighborhood of zerc. Let

G = G[u*, v*, u-, rr, o, ô]

be the homoseneous differentiar operator de.fined by Eqs. (r2a-r2d). ThenGIl,í,1,í,-0, ôl = 0 in u ilúhú;trJd orì = o. r

l(ro, ô) - c[í, i,7, ï,ar, ô1

then á(0,ô) = 0 in a neightorhood of ô = 0andla(g,ô = qi,í,_í,_í). Itfollows from the impticit runciion trrJln, that the sorution of theequation á(al, ô) = 0,is unique and therefore o = 0 in that neighborhood.
Y" ..q thus hy ro reduce *rè próuiem;il;út"s úr.'ìüilriãfll ,n" on"of solving

Fixing m = mo in Eq. (10) we now seek values b = b(õ) for whichEq. (13) possesses a periodic sotútion wiih period 4x /(mok). To obtainthem, we-set z = k|if 
.mois an even integ;r and z= kÇp if ms is odd.Twospecialcasesmustbeobserved. \Vheri-rno =0, b =0,n =1, v = 0 is asolution for all õ. Another solution is the anarytic continuation Lf , = (, u
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= 0 which is not periodic. If tno = 2 then à(ô)_is identically zero and the

solutions of Eq. (13) are u = fç,,v = 8(' and u =fç,v = !q where f, ã are odd
solutions of Eq. (1) (see Ref. 5) that can be obtained in the same way that

we calculated/and g by the PFS algorithm.
It follows from the structuÍe of the Eq. (13) that one can have u(z)

and v(z) either both even functions or both odd functions of z; hence, we

employ the PFS algorithm for fixed mo and õ * 0, assuming that u and v

can be expanded in the power series

u(z) - ! u,1") õ'; v(z) = | v'(z) ô"
í=o n-=o (14)

and define

un(z) = Lït^@)cos pt (or sin pz)
P=0

vo(z) = ) ?'p;cos pz (or sin pz)
P=0

We must also expand á in powers of õ, and thus we set

b=b" (õ )=2b íõ '
n=0

b=b" (E)= l t i õ "
n=0

for the cosine and sine expansions in Eq.(15), respectively. Obviously
b"(0) = b'(0) = bo= b^o where b^ can be either â;,0 or b,, as given in Eq.
(10). In this way, one obtains the recursive system of algebraic equations

MIüì^@) = b,0: + R,(p) (16)
where

Mlpl=l-{*2 n.2,+ uò 
^ 

t  
L âot = (1,-((  tc mo)z/4+ áo))

l -  - k t P '  k '  P ' *  l - k 2 + b o l '

| -(tz pz +4 bo) 
^ : l, ai = (4,_((k 7ns)z + 4 bo))Mt?t=l  - r ' '  pz k2 pz + 4 1t  -  kz + bo))

if zao is even oÍ odd, respectively. ttere 0^@) = (ì,@) ,ì,(p)), Rn(p\,

p > 0 depends onUi(p),0 í/ < n,0 < p <j, and ào stands for bfl or bfi.

(  15)

and
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Let pc;t =molz if mo is even and pciit= nto if mo is odd. Then the

matrix Mtp";tl is singular. It can be proved by induction that if mo is

eventhenì^ç1=Ç^ç1 =0 i f  p 7 pcnt* n ot p lpci t- t t '  The Fourier

coefficients of the even and odd solutions are the same if n 1 pcnt, ãÍtd

therefore

á ' (õ ) -b " (ô ) -o (y )
(  17)

When mo is odd the three preceeding inequalities become p) pc;t*2n'

p lpcnt-2n andp <pcÍit respectively, and the conclusion Eq. (17) remains

the same. This is an important result since, as predicted by Floquet theory,

the region between á'(õ) and á"(õ) ln the D-ô plane is of instability in the

Floquet sense.
Given the singular character of M[1t";ú, we must impose, in order to

have a unique solution, an additional condition, which we choose as

<0^(p";r);ô@*,)> = o n > 0 (  18)

where

âo@-n) = 1r, k2m314 + bo)

and < ; > is the usual dot product in R2. Then, for each n > 1, we start

with p = pcnt,choose án so that the right-hand side of Eq. (16) is orthogonal

to thò kèrnel of the adjoint matrix M*[pcrit1, determine the solution that

satisfies Eq. (18), and use this result to solve Eq' (16) for

| 3p I n,p J pcrir. The results are shown in Figs. I andz and are discussed

in Section IV.

IV. Discussion and Conclusions

In the present work we have analyzed the linear stability of th_e

space-periodic solutions of the Joulin-Sivashinsky equations under small

r D€riooic pertrnbations. Two special cases weÍe considered: namely, whe-n the

| ;;tri"nËn I, of the perturbation is an integer submultiple of the

ï ;";È"b"rh 1,, of the celtular flame, and when it is an integer submultiple
1 of ZLr

In the former case, in which mo is even, we have seen úat for fixed

k < t, *t ói ttre exponential factors á'o(õ) are negative for õ in intervals

0 < õ < õ.0, where õ^ depends on t and mo' Correspondingly' we have- that

the cellular flame is itabie to these perturbations so long as the scaled heat-

loss parameter v remains in the rang9. - (91$ (l -.k')'< v <.v'o'-.|fe\e
_ Qt$ (l _ k")t is the value of v at the bifurcation pointr -d Vzo = V(Ò-o).

In'partìcular, ttr"r" exists a minimum value of ô,õ+, determined by

ao(õ) = 0, such that the cellular flame is stable to all perturbations with
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t tr

l/

Fig. 3 Trajectory in the plane -of nondimensional heat'loss
deïiation (ü) anâ nondimensional burnin_g-ve-locity_ deviation
(p) bi furòai ing from the trajectory of the planar-front
s o l u t i o n  s .

ïve =27,,1 I mo, mo even, for 0 í õ < õa. Figure 1a exemplifies this for k =

0:4. It can be seen in that figure that the cellular flame is stable to
perturbations with m0 even, up to approximately õ = 0.6. In addition, that
Íigure also shows that the region of stability increases with tltlt
approaching a limit that numerical calculations indicate corresponds to the
maximum v* of the heatloss paÍameter v as indicated in Fig. 3'

When l,o = 2?tr /mo with reo odd and É < 1, our results indicate that
the qualitâtive behavior remains the same so long Íìs Àp < ì,"Í, i.e., mo > 3.
The largest value of õ for which the cellular flame is stable is now the root
of ôr(ô = 0 which (compare Figs. la and lb) is smaller than $4. We can
thus conclude that the cellular flames of wavelength À1= 2nlk' k < | aÍe
stable to all small periodic pertuÍbations with wavelèngths ?uo=Z?ç/a,7n
integer, as long as Lo<),,1 and the scaled heat-loss parameter is restricted to
- (914)(l - k')" < V ( Vs with va = v(ôr).

If l,e = 27ut then the cellular flame is stable only if the scaled heat-
loss parameter is greater than a minimum value determined by v(õr), õr root
of ái(õ). Boundary conditions in experiments often may be expected to
exclude this case.

Cellular flames with wave number k < I ue, in a sense, more stable
than those with t > 1, since in this later case two of the eigenvalues,
àd and bl, are positive for small ô, while all the other results remain the
same as those for È < 1.

These results imply that the cellular patterns predicted for p > 0
and v < vx are indeed stable patterns and therefore should be observable
experimentally for flames for which the assumptions of Joulin and

Iì
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Sivashinskyl apply. Al p decreases along these bifurcated solutions, a point
is reached at which these solutions aré no longer stable, and a pattern
evolving in time is then anticipated. of the many multiple solutions found
Dy Jourrn., more than one is stable, thus confirming the possibility that
more than one stable pattern can exist at the same time]
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