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Stability of Nonadiabatic Cellular Flames
near Extinction

L. Sinay* and F. A. Williams+
University of California, San Diego, La Jolla, California 92093

Abstract

Combinations of power series and Fourier series are employed here
to study the stability of the solutions of the Joulin-Sivashinsky evolution
equations that describe the dynamics of cellular premixed flames near the
condition of extinction by heat loss. Regions of stability to space-periodic
perturbations are determined, as are the distances between the boundaries of
these regions, when the perturbation has a wavelength that is a submultiple
of the wavelength of the cellular flame.

I. Introduction

The boundary-value problem defined by the Joulin-Sivashinsky
equations describes the dynamics of premixed flame fronts near the condition
of extinction by heat loss. Joulin and Sivashinsky! derived this system
under the restriction that the planar flame is unstable to cellular
perturbations. Joulin? numerically integrated steady-state one-dimensional
versions of the problem, showing that there are solutions, corresponding to
cellular flames, that propagate steadily with rates of heat loss greater than
the maximum value for extinction of the planar flame. Recently, Sinay and
Williams3 proved analytically the existence of such solutions and solved the
one-space-dimension problem utilizing a combination of power series and
Fourier series. We shall refer to this combination as the power Fourier
series (PFS) algorithm.
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264 L. SINAY AND F. A. WILLIAMS

Let D be the thermal diffusivity and U the burning velocity of the
planar flame with Lewis number Le = 1 having the maximum rate of heat
loss. Use these variables to define length and time scales, and let { and T be
correspondingly scaled space and time variables, respectively. If the flame-
front position (in units D/U) in a frame moving towards the fresh mixture
with velocity U is denoted by ¢ and a nondimensional flame temperature
decrement as v, then the Joulin-Sivashinsky boundary-value problem is

Oc+L1VOR = Ad + v on Q x R

Yo+ Vy-Vo = Ay - A + 1 (y? +v) (1)
L B Se

on  on ong Q

where v is the scaled heat-loss deviation parameter, Q is a region in R or
R2, 9Qis its boundary, and 9/dn stands for the derivative in the normal
direction. A detailed description of the physical meaning of the variables
can be found in Ref. 3. In that paper, solutions of the one-space-dimension
version of Eq. (1) were obtained in the form

¢=-pn1t+1(0)
(2)

y=-p+gl)

where f({) and g({), which are periodic in { with wavelength 2rt/k, can be
represented parametrically for each fixed k, in terms of a parameter 8, as
power series in 8 with coefficients which are Fourier series in {. The scaled
velocity deviation | and the loss parameter v were also obtained as power
series in J.

The purpose of the present paper is to describe some of the linear-
stability boundaries of Eq. (2) and their physical significance. To that end,
we first study the linear stability of plane flames, corresponding to 6=0,
and then, using the same kind of power series and Fourier series employed in
Ref. 3, we determine transitions between regions of stability and instability.

II. Stability of Planar-Front Flames

Linearizing the one-dimensional version of Eq. (1) and using Eq.
(2), we obtain

bc + fo(Ck8)0g = bcg + ¥

Ve + ge(Gh)be + (G kBN = Wi — 0 +2(-1(B) + gLV (3)
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where the subscripts { and T indicate partial derivatives with respect to the
corresponding variable and the functions f({.k,3), g(£.k,d), as well as the
parameter LL(8), are series in § given previously in Ref. 3.

Setting

¢ =e? [cos @t u*(0) + sinwt u ()]

4)

y = e? [cos @t v*({) + sin 0T v~ ({)]

and, further, transforming the resulting equations in the usual way, we
obtain a first-order system of ordinary differential equations of the form

X' =F[{ k& b,0]lX : ()'=§—C (5)

where F is an 8 x 8 real periodic matrix of period 2r/k. It follows from
Floquet theory? that corresponding to any real fundamental solution matrix
X(©) of Eq. (5), there exist a real periodic matrix P({) of period 4n/k, and a
real constant matrix C, such that

X(©) =P(Q) exp(CC) (6)

From the experimental viewpoint it is desirable to establish the
stability of the cellular flames under perturbations by excitations that are
periodic in space with wavelengths that are smaller than the dimensions of
the bumer, or rather, exact submultiples of the wavelength of the cellular
flame. We shall thus concentrate our study on the determination of the
conditions under which X in Eq. (6) is periodic; i.e., we shall seek values b =
b(3), ® = o(8) for which Eq. (5) and therefore Eq. (3) with ¢, y given by

Eq. (4) possesses a solution periodic in {, with period a multiple (or
submultiple) of 4n/k.
When 6 = 0, Eq. (3) reduces to

do.c = do.cg + Vo
)

Vo = Yorrr — Boze — (1 — k2o

Here, the subscript 0 stands for & = 0, and one must recall that f; = go = 0,
whereas po = 2 (1 - k?) (see Ref. 3).

Since Eq. (7) is a linear system of ordinary differential equations
with constant coefficients, we can assume, using the fact that we seek
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periodic solutions with period 4mn/k,
do=A exp(ot+il”2—kC), Vo=8 exp(ct+imTkC) (8)

where o =b +iw, b, and o, are real numbers, and m is an integer.
Substitution of Eq. (8) for ¢o, Wo into Eq. (7) yields a homogeneous
algebraic system, which has a nontrivial solution if and only if

prafl+ @i ]b+mikt @ 1) @2 =0
[ (2 ) k7] - (4 ) (92)

[1+2b+(m72—1)k2](0=0 (9b)

It is easy to see that, for fixed m, the only possible solution of
Eqgs. (9a) and (9b) is

w=0
b=b%=%{-[1+(’-’£i— DK VGP=)7 + mk)? ), m=0 (10)

where the superscripts + of b, correspond to the signs of the square root.

Straightforward calculations show that b§ =0, by = k2 -1 ifk <1
and b =k2-1,b5=0 if k > 1; bf> 0 and b; <0 for all k,
b3 =0,b; <0 for all k£, and finally, by < 0 for all k and m > 3.
Correspondingly, we have the real solutions

(‘3.’0)___61,1(:‘2) (11)

Wo
with

1
(2= cos ("’ZLC) (sin (%))

bt + (%&)2

We have thus established the linear stability behavior of plane
flames subject to perturbations that are periodic in space, with period
4nt/mk. Since pf >0, the known result is recovered, to the effect that the
solutions for § = 0 are unstable to disturbances with period 4m/k. The
purpose of the next section is to study the solutions of Eq. (3) which are
analytic continuations in & of Eq. (11), and the functions b = b(5), ® = w(d)
for which these solutions exist and which reduce to Eq. (10) when 8 = 0.
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ITII. Periodic Solutions
Introducing Eq. (4) for ¢, V in Eq. (3), we obtain

bu*+ou-+fru’=ug+v+ (12a)

bv'+ov-+grul +f; Vc+=VcE—ucE+-§-(—u+g) i

(12b)

bu‘—mu*+f;u;‘=u§§+v‘bV‘ (12¢)
bv-—wovt+ Ur + T VE = Vep - ‘+; -u+ 9)y-

v 8 Uy +foug ve = v - ugg 3( 8) (124)

It follows from the results of the previous section that the system
in Egs. (12a-12d) has a periodic solution of period 4rt/(mk) when & = 0 if
andonly if b=b3 and ® = 0. Let us assume for a moment that, for some
fixed k, u* =, v* =7 is a solution of Egs. (12a) and (12b) with @ = 0 and
8 in a neighborhood of zero. Then - = u,v-=7 is also a solution of Egs.
(12¢) and (12d) with ® = 0 and § in the same neighborhood of zero. Let

G=Gu*, vt, u, v, 0, §]

be the homogeneous differential operator defined by Eqgs. (12a-12d). Then
G[u,v,%,9,0,8]=0ina neighborhood of § = 0. If

h(w, 8) = G[%, %7, V.0, 8]

then £(0,8) = 0 in a neighborhood of & = 0 and ha0,8) = (4,7, -U, -¥), It
follows from the implicit function theorem that the solution of the
equation A(w, §) = 0 is unique and therefore @ = 0 in that neighborhood.
We can thus try to reduce the problem of solving Egqs. (12a-12d) to the one
of solving

bu+fruc=ug+v (13a)

bv+g§uc+fcvc=vcc—u;c+§—(—u+g)v (13b)

Fixing m = my in Eq. (10) we now seek values b = b(3) for which
Eq. (13) possesses a periodic solution with period 47 /(mok). To obtain
them, we set z = k{ if my is an even integer and z=k{/2 if myg is odd.
Two special cases must be observed. When mo=0,6=0,u=1,v=0isa
solution for all 5. Another solution is the analytic continuation of » = Cv
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= 0 which is not periodic. If mo = 2 then b(3)_is identically zero and the
solutions of Eq. (13) are u = f¢, v= g¢ and u = f;, v = g¢ where f, g are odd
solutions of Eq. (1) (see Ref. 5) that can be obtained in the same way that
we calculated f and g by the PFS algorithm.

It follows from the structure of the Eq. (13) that one can have u(z)
and v(z) either both even functions or both odd functions of z; hence, we
employ the PFS algorithm for fixed mo and § # 0, assuming that u and v
can be expanded in the power series

oo o

4@ = Y, un@) 8% v(@) = Y, va(2) 8"
n=0 n=0 (14)

and define

oo

un(z) = Y, Un(p)cos pz  (or sin pz)
p=0

(15)

oo

va(z) = Y, Va(p)cos pz  (or sin pz)
p=0

We must also expand b in powers of d, and thus we set

b=b°3) =Y bid"
n=0

and

b=bB)= 3 bid"
n=0

for the cosine and sine expansions in Eq.(15), respectively. Obviously
b°(0) = b°(0) = bo= bmo where bm, can be either by, or bmy as given in Eq.
(10). In this way, one obtains the recursive system of algebraic equations

M[P]ﬁn(P) = bn{]\: + R,.(p) (16)
where
—(k?p? + bo) 1 i
M = = s 2
) [ = k2p2+1—k2+b0}’U° (L~((k mo)?/4 + bo))
—(k2p? +4 bo) 4 L
Mlp] = = A 9
(Pl [ k2 p? k2p2+4(1—k2+b0)]’ Uo = (4,—((k mo)” + 4 bo))

if mo is even or odd, respectively. Here Un(p) = (inp) » 9n(p))s Ra(),
p 2 0dependson U; (p), 0 <j<n,0<p<j, and b, stands for b7 or bi.
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Let perit = mo/2 if mo is even and perit = mo if mo is odd. Then the
matrix M[pes] is singular. It can be proved by induction that if mo is
even then U,(p)= Va(p) =0 if p > peic+ n OF p < peiit — N. The Fourier
coefficients of the even and odd solutions are the same if n < peit, and
therefore

b°( ) — b3 ) - 0(F"%) (17)

When myo is odd the three preceeding inequalities become p > perit + 2n,
p < perit — 2n and p < perie Tespectively, and the conclusion Eq. (17) remains
the same. This is an important result since, as predicted by Floquet theory,
the region between b°(8) and 5°(8) in the b-8 plane is of instability in the
Floquet sense.

Given the singular character of M[pcrit], we must impose, in order to
have a unique solution, an additional condition, which we choose as

<[7n(pcrit) ;f]\()(Pcrit)> =0 n>0 (18)
where

Uo(per) = (1, k*md /4 + bo)

and < ; > is the usual dot product in R2. Then, for each n > 1, we start
with p = perit, choose b, so that the right-hand side of Eq. (16) is orthogonal
to the kernel of the adjoint matrix M*[peril], determine the solution that
satisfies Eq. (18), and use this result to solve Eq. (16) for
1 <p<n,p#peir. The results are shown in Figs. 1 and 2 and are discussed
in Section IV.

IV. Discussion and Conclusions

In the present work we have analyzed the linear stability of the
space-periodic solutions of the Joulin-Sivashinsky equations under small
periodic perturbations. Two special cases were considered: namely, when the
wavelength A, of the perturbation is an integer submultiple of the
wavelength 2, of the cellular flame, and when it is an integer submultiple
of 2\,

In the former case, in which mpo is even, we have seen that for fixed
k < 1, all of the exponential factors bmo(8) are negative for 8 in intervals
0 £ & < 8y, Where 8, depends on k and mo. Correspondingly, we have that
the cellular flame is stable to these perturbations so long as the scaled heat-
loss parameter v remains in the range — 9% (- k?z <V <Vmo, Where
— (9/4) (1 - k?)” is the value of v at the bifurcation point> and Vmo = V(3mo).
In particular, there exists a minimum value of 8, ds, determined by
b4(8) = 0, such that the cellular flame is stable to all perturbations with
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Fig. 1 Exponential factors bn,(5) a) for k = 0.4 and mo = 4, 6,

8 and b) for mo = 1, 3, 5; the lower and upper branches for
each mo, correspond to cosine and sine expansions respectively.
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Fig. 2 Exponential factors for k = 1.25, a) b1(3), b) bg(s).
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v
Fig. 3 Trajectory in the plane of nondimensional heat-loss
deviation (v) and nondimensional burning-velocity deviation
(n) bifurcating from the trajectory of the planar-front
solutions.

Ap = 2As/ mo, mo even, for 0 <3 < d4. Figure la exemplifies this for k =
0.4. It can be seen in that figure that the cellular flame is stable to
perturbations with mo even, up to approximately 6 = 0.6. In addition, that
figure also shows that the region of stability increases with mo,
approaching a limit that numerical calculations indicate corresponds to the
maximum v* of the heat-loss parameter v as indicated in Fig. 3.

When A, = 2A;/ mo with mo odd and k < 1, our results indicate that
the qualitative behavior remains the same so long as A, < A, ie., mo > 3.
The largest value of & for which the cellular flame is stable is now the root
of b3(8) = 0 which (compare Figs. 1a and 1b) is smaller than 4. We can
thus conclude that the cellular flames of wavelength Af=2m/k, k<1 are
stable to all small periodic perturbations with wavelengths A,=2Aq/m, m
integer, as lon% as Ap,<)s and the scaled heat-loss parameter is restricted to
- (9/4)(1 - kH)* < v < v3 with v3 =Vv(33).

If A, = 2A then the cellular flame is stable only if the scaled heat-
loss parameter is greater than a minimum value determined by v(81), 81 root
of b1(8). Boundary conditions in experiments often may be expected to
exclude this case.

Cellular flames with wave number £ < 1 are, in a sense, more stable
than those with k > 1, since in this later case two of the eigenvalues,
b¢ and b, are positive for small 8, while all the other results remain the
same as those for £ < 1.

These results imply that the cellular patterns predicted for p > 0
and v < v* are indeed stable patterns and therefore should be observable
experimentally for flames for which the assumptions of Joulin and
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Sivashinsky! apply. As p decreases along these bifurcated solutions, a point
is reached at which these solutions are no longer stable, and a pattern
evolving in time is then anticipated. Of the many multiple solutions found
by JoulinZ, more than one is stable, thus confirming the possibility that
more than one stable pattern can exist at the same time.
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