
ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 473

SESSION X

OR IN INDUSTRY

FRIDAY: 09:00 TO 10:00

ICORD-VI - International Conference on Operational Research for Development

474 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

RESOLUTION OF THE UNIDIMENSIONAL CUTTING STOCK
PROBLEM WITH USABLE LEFTOVER

Adriana Cristina Cherri
Marcos Nereu Arenales

Instituto de Ciências Matemáticas e de Computação – ICMC
Universidade de São Paulo – USP

Av. Trabalhador São-Carlense, 400 - Caixa Postal 668
13560-970 – São Carlos – SP

adriana@icmc.usp.br, arenales@icmc.usp.br

Horacio Hideki Yanasse
Laboratório Associado de Computação e Matemática Aplicada – LAC

Instituto Nacional de Pesquisas Espaciais – INPE
Av dos Astronautas, 1.758 – Jd. Granja

12227-010 – São José dos Campos – SP
horacio@lac.inpe.br

ABSTRACT

In this work we consider a one-dimentional cutting stock problem in which the non-used material
in the cutting patterns may be used in the future, if large enough. This feature introduces difficulties in
comparing solutions of the cutting problem, for example, up to what extent a minimum leftover solution is
the most interesting one when the leftover may be used? Some desirable characteristics of good solutions
are defined and classical heuristic methods are modified, so that cutting patterns with undesirable leftover
(not large enough to be used, nor too small to be acceptable waste) are redesigned. The performance of the
modified heuristics are observed by solving instances from the literature and practical instances.
Keywords: cutting stock problems, usable leftover.

1. Introduction

Cutting stock problems (CSP) consist in cutting large pieces (objects), available in stock, into a set
of smaller pieces (items) in order to fulfill their requirements, optimizing a certain objective function, for
instance, minimizing the total number of objects cut, minimize waste, minimize the cost of the objects cut
etc. These problems are relevant in the production planning of many industries such as the paper, glass,
furniture, metallurgy, plastics and textile industries.

Due to the diversity of situations where CSP arise, we are always faced with new constraints
and/or objectives for which the available methods are of limited value. Hence, the use of simple heuristics
has been observed in practice, many without any evaluation of their perfomance.

Although freqüently arising in practical situations, we could not find many articles in the literature
that consider the situation where the leftover material may be used to cut future demands, if large enough.
We call leftover any piece cut that is not a required item. To the best of our knowledge only Gradisar et al.
(1997), Gradisar et al. (1999a), Gradisar et al. (1999b), Gradisar and Trkman (2005) and Abuabara (2006)
consider this possibility. In 1997, Gradisar et al. proposed a heuristic (denoted by COLA) to optimize roll
cutting in the textile industry with the objective of creating a cutting plan with reduced letfovers or to
concentrate them in a single object. All objects have different lengths and they propose a bi-objective
function that minimizes the number of unfulfilled item demands and the total loss (sum of the leftover
smaller or equal to a pre-defined value). In 1999, Gradisar et al. proposed a modified COLA (denoted by
CUT) and in 2005, Gradisar and Trkman developed an algorithm to find a solution to general
unidimensional cutting stock problems with distinct objects, starting from the solution obtained by CUT
and replanning patterns that do not satisfy some criteria. In 2006, Abuabara modified the mathematical
model proposed by Gradisar et al. (1997), decreasing its size, that is, reducing the number of constraints
and variables in the model.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 475

In this work we present some characteristics of a desirable solution (we avoid “optimal solution”
since a criterion to compare solutions is not defined) to the cutting stock problem with usable leftover
(CSPUL). Modifications on classical heuristic methods to solve CSP are suggested aiming to find a
solution that satisfies those characteristics.

This article is organized as follows. In Section 2, the CSPUL is defined. Some methods to solve it
are presented in Sections 3 and 4. Computational tests are presented in Section 5 and conclusion remarks
and future works are presented in Section 6.

2 Definition of the cutting stock problem with usable leftover

During the cutting process, unavoidable leftover occur that are often discarded. Some industries,
however, have the possibility of using the leftover to cut future demanded items, as long as their sizes are
sufficiently large. In this situation, the simple objective of minimizing the leftover may not be appropriate.

Many of the solution methods to solve cutting problems aim to minimize leftover (alternative
objectives may be defined but low amount of leftover must also be pursued). Although a low amount of
leftover is an objective to pursue, the possibility of using them introduces a new condition to evaluate a
solution. In this new problem, planning cutting patterns that concentrate the leftover in fewer patterns
seems to be a good alternative to pursue since it increases the chances that these leftovers will be
sufficiently large to go back to stock to be used to cut future demanded items.

Hence, we present the unidimensional CSPUL as:

“A set of pieces (items) must be produced by cutting large units (objects) of standard sizes
(objects bought from suppliers) or non standard (objects that are leftover of previous cuts). The demand of
the items and the availability of the objects are given. Demand must be met by cutting the available objects
such that the leftover are “small” (denoted by scrap) or “sufficiently large” (denoted by retail) to return to
stock, but in a reduced number”.

This high level definition aims to capture the main elements of the CSPUL but it lacks details that
are going to be completed next.

The “sufficiently large” length or, equivalently, the minimum acceptable length for retail is a
choice of the decision maker. Some possible choices include the length of the shortest demanded item, the
average lengths of the demanded items or the length of the longest demanded item. Gradisar et al. (1997),
Gradisar et al. (1999a), Gradisar et al. (1999b) and Gradisar and Trkman (2005) considered a retail any
leftover with length greater or equal to the shortest demanded item. This choice may not be interesting in
cases where the portfolio of demanded items includes a small item that is not typical because it is likely that
retails that are seldomly used will be stocked. On the other hand a particular portfolio may include only
large items, and retails with sizes smaller than the smallest of the items are acceptable.

In the classical CSP we find objective functions like minimize the total waste, minimize the
number of objects cut, minimize the costs, and so on. In the CSPUL our objective is to have little or no
scraps (as in the classical problem) and/or a reduced number of retails. Therefore, two solutions with the
same leftover may be different as illustrated in

Figure 1. In this example, a leftover piece of size larger or equal to 4 meters is considered retail.

 (a) Objects in stock to be cut. (b) Required items.

ICORD-VI - International Conference on Operational Research for Development

476 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

 (c) Solution 1. (d) Solution 2. (e) Solution 3.

Figure 1: A cutting stock problem data and alternative solutions

For the CSPUL, Solution 2 (Fig 1 - d) is better than Solution 1 (Fig 1 - c), since it concentrates the
leftover of a size superior to 4 meters (a retail) in a single object (Solution 1 has 5 m of scrap while Solution
2 has zero scrap and a retail of 5 m). For the CSPUL we can say that Solution 1 is an undesirable solution
compared to the ideal Solution 2. Another undesirable solution (compared with Solution 2) is Solution 3,
given in Figure 1 - e, for although it does not generate scraps, it generates a larger number of retails.

Due to the difficulty in defining a single objective function that differentiates such solutions we
begin qualifying the solutions according to the following definition.

Definition 1: The solutions of a CSPUL are defined as:
 Ideal solution: when a small number of objects have little scraps and none of the objects

have not so little scraps. In case there are retails, they must be concentrated in a very
small number of cut objects;

 Acceptable solution: when a small number of objects present not so little scraps and a
small number of objects present retails;

 Undesirable solution: when several cut objects present not so little scraps or present
several retails.
Observe that an ideal solution is always acceptable but the reverse is not true.

This definition (that depends on quantifying terms like small, very small or several objects, little
scrap or not so little scrap and retail), tries to incorporate general features of the solutions for the CSPUL.
By not so little scrap we mean a leftover material that is larger than a little scrap but it is not big enough to
be a retail.

The sizes of little scrap, not so little scrap or retail are defined by the user (decision maker). The
decision maker can define these values by his/here experience. Also he/she may use parameters to define
them, like:

θ : fraction that defines the largest size for a leftover material to be considered a little scrap for
standard sized objects, that is, kLθ is the maximum size for a leftover material to be considered little scrap

in a standard object of lenght kkL ...,1,k =, , where k is the quantity of standard object types in stock;

 β : fraction that defines the largest size for a leftover material to be considered a little
scrap for non standard sized objects, that is, βLk is the maximum size for a leftover
material to be considered little scrap in a non standard object of lenght Lk, k = k + 1,
..., K (the objects of type k +1,..., K are retails);

 δ : smallest size of a leftover to be considered a retail (for example, δ is the average
length of the item types demanded). Any leftover larger or equal to δ is considered
retail, independent of the object type.

Observe that with the parameters θ and β we make the scrap dependent on the object type. The
additional parameter β allows the decision maker to define larger “little scraps” for non-standard objects,
making them more prone to be used compared to the standard objects.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 477

The quantities “small”, “very small” and “several” in definition 1 are also defined by the user
(decision maker). The decision maker can define them by his/her experience or he/she can use, for
instance, two parameters ξ1 and ξ2, with 0 < ξ1 < ξ2 < 1 and set:

- Very small number of objects cut: up to ⎡ξ1η⎤
of the objects cut;

- Small number of objects cut: up to ⎡ξ2η⎤ of the
objects cut;

- Several objects cut: above ⎡ξ2η⎤ of the objects
cut;
where η is the total number of objects cut in the solution.

For simplicity, from now on, we use the term acceptable leftover when the leftover is a small
scrap or a retail.

With the aim of generating an ideal solution, or at least an acceptable one, we introduce
modifications in some well known heuristics of the literature to solve the unidimensional CSP so that
solutions with several objects having not so small scraps are avoided. These are described in the next
Sections 3 and 4.

3 Constructive Heuristics

One heuristic used in the solution of the CSP is the exhaustive repetition (Hinxman, 1980). This
heuristic builds a “good” cutting pattern for each object type k, k = 1, ..., K, select one of the cutting
patterns generated (a selection criterion can be, e.g., minimum waste. This selected pattern is associated
with an object type), use the cutting pattern chosen as much as possible, without exceeding the required
demand of the items and the availability of the associated object and update the demand of the items and
the stock of the objects. Two very well known procedures to generate “good” cutting patterns are FFD
(First Fit Decreasing) and Greedy.

FFD Procedure

In the FFD procedure we initially cut the largest item as much as possible or until its demand is
satisfied (the largest items are chosen first since they are, generally, more difficult to be combined). When
it is not possible anymore to cut the largest item, the second largest item is considered and, so on, until we
reach the smallest item. When no new item can be cut, the pattern is complete.

Greedy Procedure

In the greedy heuristic the cutting patterns are generated solving a sequence of knapsack problems
of the form:

(3)integerand...,,1,0
)2(...

:subject to
(1)...maximize)(

2211

2211

mira
baaa

aaabz

ii

mm

mm

=≤≤
≤+++

+++=

lll

lll

where il is the length of item i, i = 1, ..., m, and ri is the residual demand of item i, i = 1, ..., m,

updated in Step 4. Initially, ri = di, i = 1, ..., m, the required number of items type i.
These two classical procedures have distinct phylosophies. In the FFD procedure, there is an

excessive concern in producing the largest items as earlier as possible since they are harder to combine,
while in the Greedy procedure the best possible cutting patterns are generated first, with no concern about

ICORD-VI - International Conference on Operational Research for Development

478 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

the quality of the future cutting patterns. Next we modify these two procedures to deal with the case of
usable leftover.

3.1 FFDL procedure

We modify the FFD procedure aiming to avoid not so small scraps, that is, trying to obtain at
least, acceptable solutions.

The FFDL procedure applies FFD to generate a pattern and, just after the generation, the leftover is
analysed. If it is an acceptable leftover (a small scrap or a retail) the pattern is accepted. Otherwise, we take
out an item (the largest one) of the pattern. With the resulting empty space we solve the knapsack problem
(1)-(3), with the capacity b equal to the leftover material of the generated pattern plus the size of the item
withdrawn. After solving the knapsack problem, the resulting leftover is analysed and if it is not acceptable,
an additional item (second largest) of the original pattern is withdrawn. Again, with the space generated a
new knapsack problem (1)-(3) is solved. In case we have withdrawn an item of each size among all items
in the pattern, we withdraw again another piece of the largest item. This procedure is repeated until the
leftover obtained is acceptable or the initial cutting pattern becomes null. In this latter case, the cutting
pattern is the solution of knapsack problem (1)-(3). For more details, see Cherri et al. (2007).

3.2 GreedyL procedure

The GreedL procedure consists in applying the Greedy procedure to obtain a cutting pattern and
observe the leftover. If acceptable (small scrap or retail), the pattern is accepted, otherwise the largest item
in the pattern is withdrawn and the leftover is analysed again. If the pattern is still unacceptable the second
largest item is withdrawn. This process is repeated until we have an acceptable pattern or a null pattern. If
the pattern is null, we choose among the original patterns, the one that presents the smallest leftover (this is
not a typical situation but it can occur, for instance, when the stock is formed only by retails). For more
details, see Cherri et al. (2007).

4 Residual Heuristics

Residual heuristics find an integer solution for the unidimensional CSP from the linear
relaxation of the Integer Programming problem
 Minimize f(x) = cTx (4)
 subject to Ax = d (5)
 Ex ≤ e (6)
 x ≥ 0 and integer (7)

each column of the matrix A is associated with a cutting pattern, and E is a matrix of 0’s and 1’s with stock
constraints. For detail, see Poldi and Arenales (2005).

The integrality condition on the variables xjk complicates the solution of the problem as m
increases (it is already difficult when m is of the order of a few dozens). Gilmore e Gomory
(1961) proposed to solve the problem using column generation after relaxing the integrality
constraints on the decision variables xjk. From the optimal solution of the relaxed problem, that
usually is not integer, we determine an integer solution for the original CSP. This integer solution
can be determined by heuristics that have been developed by several researchers, like Wäscher
and Gau (1996), Poldi and Arenales (2005), Stadtler (1990), among others. Some of these
heuristics are presented in subsections 4.1 and 4.2.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 479

Definition 2: Let x be an optimal fractional solution for the linear realxation problem (4)-(7) and
let y be a vector of non-negative integer numbers, close in some sense to x, such that:

 Ay ≤ d (8)

 Ey ≤ e (9)

y, obtained from x, is called an approximate integer solution of x.integer solution y of x is by a simple
truncation:

 y = (⎣x1⎦, ⎣x2⎦, …, ⎣xn⎦) (10)
that satisfies (8)–(9) since all coefficients of A and E are non-negative, x satisfies Ax = d and Ex
≤ e.

Definition 3: (Residual Problem): Let y be an approximate integer solution of x, r = d – Ay the
residual demand and s = e – Ey the residual stock of the available objects. The residual problem is defined
as (4) – (7) with d = r and e = s.

In residual heuristics we solve a linear relaxation of problem (4)-(7) and we obtain an approximate
integer solution. We then solve a linear relaxation of the residual problem (definition 3) and we obtain an
approximate integer solution and, so on successively, until the residual demand is null or the approximate
integer solution is null. In the latter case, we apply some method (heuristic or exact) to solve the residual
problem with just a few items. Next, we present a general structure of these heuristics.

Residual Algorithm (from Poldi and Arenales, 2005)

Step 1: {Start}
 Do l= 0, r0 = d, s0 = e;

Step 2: {Determining the continuous optimal solution}
 Solve the residual problem with r = lr and s = ls ;
 Let lx be the continuous solution (column generation is used);
 If lx is integer, then STOP.

Step 3: {Determining an approximate integer solution}
 Determine ly , the approximate integer solution of lx .
 If ly is a null vector, then go to the Step 5.

Step 4: {Update}
 Determine the new residual demand

1+lr = lr - A ly ;
 1+ls = ls - E ly ;

 1+= ll .

 Go to Step 2.

ICORD-VI - International Conference on Operational Research for Development

480 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

Step 5:
 Solve the final residual problem with a few items by some method, heuristic or exact.

4.1 Residual Heuristic by Greedy Rounding (RGR)

Poldi and Arenales (2005) developed a greedy rounding procedure to obtain an approximate
integer solution of a continuous solution x in Step 3 of the residual algorithm.

In Poldi and Arenales’s greedy rounding procedure, Step 3 of the residual algorithm is divided in
two parts: Pre-processing Step and Rounding Step. For these heuristics, refered to as RGR heuristics, the
Step 5 of the residual heuristic never occurs for all demand is satisfied since at least for one pattern its
frequency will be rounded up to its nearest integer and, hence, ly will never be null in Step 3.

In the Pre-processing Step we order the cutting patterns of the continuous solution lx (obtained
in Step 2 of the residual algorithm) according to RGR 1, RGR 2 and RGR 3, described in Poldi and
Arenales (2005).

In the Rounding Step, we start with the first cutting pattern, following one of the previous
orderings, and we round up its frequency, that is, =

11ky ⎡
11kx ⎤ . The other frequencies are set to 0, that is,

0=jkjy , j = 2, ..., T. Conditions (8) and (9) are tested and, in case of violation,
11ky is reduced

successively by a unit, that is, 1
11 11 −= kk yy , unitl we get an approximate integer solution. The value of

11ky is fixed and we repeat the procedure with the second pattern. We determine a new approximate

integer solution
21 21 kk y,y and 0=jkjy , j = 3, ..., T. We repeat the procedure for all cutting patterns.

To solve the CSPUL, we adapted this greedy rounding to obtain heuristics RGRL –
versions 1, 2 and 3.

4.2 RGR Heuristics for the CSPUL

In the RGRL heuristics we use a bound for the maximum acceptable fraction for a scrap defined
from the approximate integer solution obtained by using one of the versions of the RGR heuristic (in the
constructive heuristics, this bound is previously defined by the user, for standard and non-standard objects).

The RGRL heuristics consist of determining an approximate integer solution by using the greedy
rounding procedure according to RGR (versions 1, 2 or 3). After, we analyze the leftover material of all
cutting patterns generated. If the leftover is acceptable, i.e., if it is less than the limit previously calculated,
then the pattern i of object type ki is accepted and stored, otherwise, the pattern i is rejected and demand of
the items in pattern i and inventory of the object type ki are updated. After analyzing all the cutting patterns
generated, we apply the FFDL procedure to solve the residual problem formed by the items of the rejected
patterns and the remaining objects.

Other procedures to solve the residual problem in the heuristics type RGRL can be used. We
suggest the FFDL procedure because this heuristic generates less scrap when compared with the FFD and
Greedy heuristics, and a smaller quantity of objects cut with retail compared to GreedL heuristic.

5 Computational Tests

Computational tests are presented by solving instances from Trkman (2005) and practical
instances from Abuabara (2006). For these tests, we consider retail any material left with length larger or
equal to the average of the lengths of the required items.

To classify the solutions (ideal, acceptable, or undesirable) obtained according to definition 1, we
use the values ξ1 = 0.03 and ξ2 = 0.1, except for instances 4 and 5, that present small demand.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 481

All the heuristics were implemented in DELPHI 6. The experiments were executed in a Pentium
IV (3 GHz, 2 GB RAM) microcomputer. The implicit enumeration method described in Gilmore and
Gomory (1961) was used to solve the knapsack problems that arise in the heuristics and in the column
generation.

5.1 Results using Instances of the Literature

In this section we present numerical instances from Trkman (2005) and practical instances from
Abuabara (2006).

In the instances of Trkman (2005) we have several types of objects in stock but only one of each
type, that is, ek = 1 for all k. This is a very special situation where the variables xjk are binary. Due to the
special characteristic of these instances, we treated the objects as non-standards and we set only the
parameter β to 0.005.

For these instances we have information about the solution given by the CUT algorithm,
therefore, we used the same criteria adopted by Gradisar et al. (1997) for scrap and retail, that is, all the
material left after cutting an object that is greater or equal to the smallest item demanded is considered
retail, otherwise it is scrap.

In the following tables we classify the solutions according to definition 1 and we use ID to denote
an ideal solution, AC to denote an acceptable solution, and UND to denote an undesirable solution. Also
we use Obj.Cut. to denote the quantity of objects cut, Tot.Length to denote the total length of the objects in
stock cut, Total Loss to denote the total length of scraps, Total Ret. to denote the total length of the retails,
OSScrap to denote the number of objects cut with small scrap, ONSScrap to denote de number of objects
cut with not so small scrap, and ORetail to denote the number of objects cut with retail.

Instance 1. K = 20 types of objects with lengths between 2,200 and 6,000 cm; availability of one unit of
each type of object and m = 5 items demanded according to Table 1.

Table 1 - Data of instance 1 – Items

Item Length (cm) Demand

1 235 4

2 200 51

3 347 42

4 471 16

5 274 37

From Table 1, δ = 200 cm since this is the length of the smallest item. In Table 2 we present the

computational test results obtained.

Table 2 – Solution of Instance 1

 Constructive Residual

CUT FFD FFDL Greedy GreedyL

RGR

1

RGRL

1

RGR

2

RGRL

2

RGR

3

RGRL

3

Obj.Cut. 11 11 13 12 12 10 10 10 10 11 10

Tot.Length 44136 44027 48506 44715 46104 44079 45245 44079 45245 47141 46507

ICORD-VI - International Conference on Operational Research for Development

482 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

Total Loss 5 639 8 39 1 0 0 0 0 19 0

Total Ret. 743 0 5110 1288 2715 691 1857 691 1857 3734 3119

OSScrap 3 1 3 1 1 0 0 0 0 0 0

ONSScrap 0 10 0 3 0 0 0 0 0 1 0

ORetail 1 0 7 1 4 1 1 1 1 2 2

Solution AC UND UND UND UND ID ID ID ID AC AC

From Table 2 we observe that the heuristics RGRL – versions 1, 2 use less objects than the CUT
algorithm but the total length of the objects is longer, that is, they use longer objects compared to CUT.
This was expected since CUT gives priority to smaller objects first. We also notice that similar to algorithm
CUT, heuristics RGRL – versions 1 e 2 concentrate the leftover in a single object. With respect to losses,
none of these two heuristics generate losses performing better than algorithm CUT with respect to this
criterion. Note that, in general, the derived heuristics with usable leftover perform better compared to their
original version by definition 1. For this instance, the classification of the solutions obtained by each
algorithm is given in the last row of the Table, using definition 1 and the parameters defined previously.

Instance 2: K = 90 types of objects with lengths between 3,000 and 9,000 cm; availability of one unit of
each type of object and m = 15 item types demanded according to Table 3.

Table 3 – Data of instance 3 – Items

Item Length (cm) Demand

1 569 34

2 718 26

3 520 25

4 540 12

5 492 30

6 547 2

7 632 6

8 430 36

9 750 7

10 387 20

11 804 3

12 389 32

13 835 18

14 684 39

15 687 10

For this instance, δ is equal to 387 cm.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 483

Table 4 - Solution of Instance 3

 Constructive Residual

 CUT
FFD FFDL Greedy GreedyL

RGR

1

RGRL

1

RGR

2

RGRL

2

RGR

3

RGRL 3

Obj.Cut. 27 27 29 30 30 22 22 22 22 24 22

Tot.Length 170504 172055 170343 175473 173814 170621 172114 170621 172114 175742 170989

Total Loss 2 2009 14 224 0 0 0 0 0 0 0

Total Ret. 1456 1000 1283 6203 4768 1575 3098 1575 3098 6696 1943

OSScrap 2 7 9 0 0 0 0 0 0 0 0

ONSScrap 0 17 0 4 0 0 0 0 0 0 0

ORetail 1 1 1 2 6 2 1 2 1 3 1

Solution ID UND AC UND UND AC ID AC ID AC ID

For this larger instance, we observe from Table 4 that the solutions presented by the residual

heuristics RGRL – verions 1, 2 and 3 and by the CUT algorithm were considered ideal, according to
definition 1. Also, if we compare the solutions obtained with the modified heuristics compared with the
ones obtained with the original procedures, we clearly observe improvements in quality, following
definiton 1.

We presented here the computational test results of 2 instances only, although we received and
tested a total of eight instances. In all the 8 instances we observed a similar behaviour, i.e., the performance
of the modified heuristics were better or equivalent to the performance of algorithm CUT, according to
definiton 1. The results of the other instances can be seen in Cherri (2006).

The next set of instances is from Abuabara (2006), whose work is based on the models proposed
by Gradisar et al. [3]. The instances are from the portfolio of demands of a small Brazilian agricultural
airplane industry that cuts methalic tubes to build its airplanes whose structure are formed with lattice
porticoes.

The instances presented, which characterize small industries, are not classified according to
definition 1 since the values ξ1 = 0.03 and ξ2 = 0.1 that we planned to use are not appropriate because the
total number of objects cut is small (small demand) therefore yielding a very small bound for the quantity
of objects with small scraps, not so small scraps and retails. The choice of the best solution according to
definition 1 can be made after the quantities “small”, “very small” and “several” are defined by the
decision maker.

In the following examples, we have a single type of object in stock, that is, ek = 1, k = 1.

Since the stock has standard objects only we define solely the parameter θ and we use θ = 0.005.
The minimum size of the retails is δ = min, i = 1, ..., m}.

Instance 3: The length of the objects in stock is 3,000 cm and there are 10 of them. m = 5 item
types demanded according to Table 5.

ICORD-VI - International Conference on Operational Research for Development

484 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

Table 5 – Data of instance 4 – Items

Item Length (cm) Demand

1 250 2

2 273 2

3 285 4

4 525 4

5 1380 4

Any leftover material on a cutting pattern larger than or equal to 250 cm is considered a retail.

Table 6 – Solution to Instance 4

 Constructive Residual

FFD FFDL Greedy GreedyL

RGR

1

RGRL

1

RGR

2

RGRL

2

RGR

3

RGRL

3

Obj.Cut. 4 5 4 5 4 5 4 5 4 5

Tot.Length 12000 15000 12000 15000 12000 15000 12000 15000 12000 15000

Total Loss 525 0 240 0 240 0 240 0 244 4

Total Ret. 1669 5194 1954 5194 1954 5194 1954 5194 1950 5190

OSScrap 0 0 0 0 0 0 0 0 1 1

ONSScrap 3 0 1 0 1 0 1 0 1 0

ORetail 1 3 1 3 1 3 1 3 1 3

From Table 6 we observe that the RGRL algorithms – versions 1, 2, do not generate scraps but
they present large quantities of retails when compared to the original heuristics. This occurs since the
usable leftover heuristics tend to eliminate the not so small scraps.

In this instance and the next ones, we are faced with solutions where we have loss of material but
a single retail or no loss of material but a larger number of retails. This is a typical situation that we face
when we solve this problem; we rarely obtain a solution that is good considering all the criteria. So, the
choice of the best solution is of the decision maker since he/she knows better the reality of the firm.

Instance 5: The length of the objects in stock is 6,000 cm and there are 10 of them. m = 4 item types
demanded according to Table 7.

Table 7 - Data of instance 5 – Items

Item Length (cm) Demand

1 370 5

2 905 5

3 910 5

4 930 5

Any leftover material on a cutting pattern larger than or equal to 370 cm is considered retail.

ICORD-VI - International Conference on Operational Research for Development

Fortaleza, CE - Brazil - August 29th. to 31st., 2007 485

Table 8 – Solution to Instance 5

 Constructive Residual

FFD FFDL Greedy GreedyL

RGR

1

RGRL

1

RGR

2

RGRL

2

RGR

3

RGRL 3

Obj.Cut. 3 4 3 3 3 3 3 3 3 3

Tot.Length 18000 24000 18000 18000 18000 18000 18000 18000 18000 18000

Total Loss 250 0 250 0 515 150 515 150 515 150

Total Ret. 2175 8425 2175 2425 1910 2275 1910 2275 1910 2275

OSScrap 0 0 0 0 0 0 0 0 0 0

ONSScrap 2 0 2 0 2 1 2 1 2 1

ORetail 1 4 1 3 1 2 1 2 1 2

As we can observe, the original heuristics generate only a single retail to stock but all of them
present larger losses compared to the losses of the modified heuristics. In the RGRL heuristics– versions 1,
2 and 3, it was not possible to eliminate all the not so small scraps, but the quantity of retails is smaller
compared to the other modified heuristics. The choice of the best solution is not trivial since it involves the
simultaneous analysis of several features. The option of generating only a single retail leads to significantly
larger losses while the solutions with no loss have a significant number of retails. Again, the instance
shows the conflicting nature of the objectives and the decision maker must make his/her choice.

For these instances, solutions with the mathematical models of Gradisar et al. (1997) or Abuabara
(2006) can be obtained. In these models constraints on the number of retails are imposed. The solutions
obtained with these models are, in general, similar to the solutions obtained using the modified heuristics.
When we consider a great variety of object types in stock with large availability as well as a large variety of
item types with large demands, the mathematical models present a large number of variables and advanced
solvers like CPLEX, often are not able to produce a solution.

To evaluate the heuristics described in sections 3 and 4, a test generator was elaborated and 16
classes of instances were considered. For each class, 20 instances were randomly generated. For these
randomly generated classes, we also present the results obtained using the COLA algorithm developed by
Gradisar et al. (1997). Algorithm COLA minimizes the loss of material and/or tries to concentrate them in
a single object so that they become retail. After analyzing tests, we verify that the RGRL type heuristics
present the best solutions, i.e., they were classified as ideal. Detail of the instances and solutions can be
found in Cherri et al. (2007).

6 Conclusions

In this article we considered the cutting stock problem with usable leftover, that is, if the resulting
leftover material of a cut object is large enough it can be used again to cut future demanded items. To deal
with this problem, we modified some heuristics of the literature that minimizes the trim loss and we
included the possibility of retails (large leftover) that are not computed as losses. A set of desirable
characteristics were used to define solutions as ideal, acceptable and undesirable. Still, there exist
difficulties in pointing out which method performed better for the solutions present important and
conflicting characteristics, like retail, small scrap, not so small scrap, together with their distribution in the
cut objects. Other characteristics like the total length of the losses generated, the quantity of new retails
generated, can also be included.

The use of mathematical models like those proposed by Gradisar et al. (1997, 1999a, 1999b,
2005) and Abuabara (2006) are practically suitable for solving problems with a small quantity of objects
and items of moderate sizes but they are computational time consuming for instances with large quantities

ICORD-VI - International Conference on Operational Research for Development

486 Fortaleza, CE - Brazil - August 29th. to 31st., 2007

of objects and items with large demands. The modified heuristics can handle these instances without much
effort.

Acknowledgments

The authors are indebed to Dr. Kelly Cristina Poldi for her help on implementations. This work
was partially financed by FAPESP and CNPq.

References

ABUABARA, A., (2006), Otimização no corte de tubos estruturais: aplicação na indústria
aeronáutica agrícola. MS Dissertation, DEP - UFSCar, São Carlos, SP, Brazil.
CHERRI, A. C., (2006), O problema de corte de estoque com reaproveitamento da sobras de
material. MS Dissertation, ICMC - USP, São Carlos, SP, Brazil.
CHERRI, A. C., ARENALES, M., YANASSE, H. (2007), The unidimensional cutting stock
problem with usable leftover – a heuristic approach. Notas do ICMC - Série Computação, 91,
ICMC – USP, São Carlos, SP, Brazil.
GRADISAR, M., JESENKO, J., RESINOVIC, C., (1997), Optimization of roll cutting in
clothing industry. Computers & Operational Research, 10: 945-953.
GRADISAR, M., KLJAJIC, M., RESINOVIC, C., JESENKO, J., (1999a), A sequential heuristic
procedure for one-dimentional cutting. European Journal of Operational Research, 114: 557-568.
GRADISAR, M., RESINOVIC, C.,KLJAJIC, M., (1999b), A hybrid approach for optimization
of one-dimentional cutting. European Journal of Operational Research, 119: 719-728.
GRADISAR, M., TRKMAN, P., (2005), A combined approach to the solution to the general one-
dimentional cutting stock problem. Computers and Operations Research, 32: 1793-1807.
GILMORE, P. C., GOMORY, R. E., (1961), A linear programming approach to the cutting stock
problem. Operations Research, 9: 848-859.
HINXMAN, A., (1980), The trim-loss and assortment problems: a survey. European Journal of
Operational Research, 5: 8-18.
TRKMAN, P., (2005), Private Communication (09/11/2005).
POLDI, K. C., ARENALES, M. N., (2005), Dealing with small demand in integer cutting stock
problems with limited different stock lengths. Notas do ICMC - Série Computação, 85, ICMC –
USP, São Carlos, SP, Brazil.
STADTLER, H., (1990), A one-dimensional cutting stock problem in the Aluminium Industry
and its solution. European Journal of Operational Research, 44: 209-223.
WÄSCHER, G., GAU, T., (1996), Heuristics for the integer one-dimensional cutting stock
problem: a computational study. OR Spektrum, 18: 131-144.

