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ABSTRACT 

In this work we consider a one-dimentional cutting stock problem in which the non-used material 
in the cutting patterns may be used in the future, if large enough. This feature introduces difficulties in 
comparing solutions of the cutting problem, for example, up to what extent a minimum leftover solution is 
the most interesting one when the leftover may be used? Some desirable characteristics of good solutions 
are defined and classical heuristic methods are modified, so that cutting patterns with undesirable leftover 
(not large enough to be used, nor too small to be acceptable waste) are redesigned. The performance of the 
modified heuristics are observed by solving instances from the literature and practical instances. 
Keywords: cutting stock problems, usable leftover. 

1. Introduction 

Cutting stock problems (CSP) consist in cutting large pieces (objects), available in stock, into a set 
of smaller pieces (items) in order to fulfill their requirements, optimizing a certain objective function, for 
instance, minimizing the total number of objects cut, minimize waste, minimize the cost of the objects cut 
etc. These problems are relevant in the production planning of many industries such as the paper, glass, 
furniture, metallurgy, plastics and textile industries.  

Due to the diversity of situations where CSP arise, we are always faced with new constraints 
and/or objectives for which the available methods are of limited value. Hence, the use of simple heuristics 
has been observed in practice, many without any evaluation of their perfomance.  

Although freqüently arising in practical situations, we could not find many articles in the literature 
that consider the situation where the leftover material may be used to cut future demands, if large enough. 
We call leftover any piece cut that is not a required item. To the best of our knowledge only Gradisar et al. 
(1997), Gradisar et al. (1999a), Gradisar et al. (1999b), Gradisar and Trkman (2005) and Abuabara (2006) 
consider this possibility. In 1997, Gradisar et al. proposed a heuristic (denoted by COLA) to optimize roll 
cutting in the textile industry with the objective of creating a cutting plan with reduced letfovers or to 
concentrate them in a single object. All objects have different lengths and they propose a bi-objective 
function that minimizes the number of unfulfilled item demands and the total loss (sum of the leftover 
smaller or equal to a pre-defined value). In 1999, Gradisar et al. proposed a modified COLA (denoted by 
CUT) and in 2005, Gradisar and Trkman developed an algorithm to find a solution to general 
unidimensional cutting stock problems with distinct objects, starting from the solution obtained by CUT 
and replanning patterns that do not satisfy some criteria. In 2006, Abuabara modified the mathematical 
model proposed by Gradisar et al. (1997), decreasing its size, that is, reducing the number of constraints 
and variables in the model.  
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In this work we present some characteristics of a desirable solution (we avoid “optimal solution” 
since a criterion to compare solutions is not defined) to the cutting stock problem with usable leftover 
(CSPUL). Modifications on classical heuristic methods to solve CSP are suggested aiming to find a 
solution that satisfies those characteristics. 

This article is organized as follows. In Section 2, the CSPUL is defined. Some methods to solve it 
are presented in Sections 3 and 4. Computational tests are presented in Section 5 and conclusion remarks 
and future works are presented in Section 6. 

2 Definition of the cutting stock problem with usable leftover 

During the cutting process, unavoidable leftover occur that are often discarded. Some industries, 
however, have the possibility of using the leftover to cut future demanded items, as long as their sizes are 
sufficiently large. In this situation, the simple objective of minimizing the leftover may not be appropriate. 

Many of the solution methods to solve cutting problems aim to minimize leftover (alternative 
objectives may be defined but low amount of leftover must also be pursued). Although a low amount of 
leftover is an objective to pursue, the possibility of using them introduces a new condition to evaluate a 
solution. In this new problem, planning cutting patterns that concentrate the leftover in fewer patterns 
seems to be a good alternative to pursue since it increases the chances that these leftovers will be 
sufficiently large to go back to stock to be used to cut future demanded items.  

Hence, we present the unidimensional CSPUL as: 

“A set of pieces (items) must be produced by cutting large units (objects) of standard sizes 
(objects bought from suppliers) or non standard (objects that are leftover of previous cuts). The demand of 
the items and the availability of the objects are given. Demand must be met by cutting the available objects 
such that the leftover are “small” (denoted by scrap) or “sufficiently large” (denoted by retail) to return to 
stock, but in a reduced number”.  

This high level definition aims to capture the main elements of the CSPUL but it lacks details that 
are going to be completed next.  

The “sufficiently large” length or, equivalently, the minimum acceptable length for retail is a 
choice of the decision maker. Some possible choices include the length of the shortest demanded item, the 
average lengths of the demanded items or the length of the longest demanded item. Gradisar et al. (1997), 
Gradisar et al. (1999a), Gradisar et al. (1999b) and Gradisar and Trkman (2005) considered a retail any 
leftover with length greater or equal to the shortest demanded item. This choice may not be interesting in 
cases where the portfolio of demanded items includes a small item that is not typical because it is likely that 
retails that are seldomly used will be stocked. On the other hand a particular portfolio may include only 
large items, and retails with sizes smaller than the smallest of the items are acceptable.  

In the classical CSP we find objective functions like minimize the total waste, minimize the 
number of objects cut, minimize the costs, and so on. In the CSPUL our objective is to have little or no 
scraps (as in the classical problem) and/or a reduced number of retails. Therefore, two solutions with the 
same leftover may be different as illustrated in  

Figure 1. In this example, a leftover piece of size larger or equal to 4 meters is considered retail. 

 
             (a)  Objects in stock to be cut.                           (b)  Required items. 
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          (c)  Solution 1.                      (d)  Solution 2.                   (e)  Solution 3. 

Figure 1: A cutting stock problem data and alternative solutions 
 

For the CSPUL, Solution 2 (Fig 1 - d) is better than Solution 1 (Fig 1 - c), since it concentrates the 
leftover of a size superior to 4 meters (a retail) in a single object (Solution 1 has 5 m of scrap while Solution 
2 has zero scrap and a retail of 5 m). For the CSPUL we can say that Solution 1 is an undesirable solution 
compared to the ideal Solution 2. Another undesirable solution (compared with Solution 2) is Solution 3, 
given in Figure 1 - e, for although it does not generate scraps, it generates a larger number of retails. 

Due to the difficulty in defining a single objective function that differentiates such solutions we 
begin qualifying the solutions according to the following definition.  

Definition 1: The solutions of a CSPUL  are defined as: 
 Ideal solution: when a small number of objects have little scraps and none of the objects 

have not so little scraps. In case there are retails, they must be concentrated in a very 
small number of cut objects; 

 Acceptable solution: when a small number of objects present not so little scraps and a 
small number of objects present retails; 

 Undesirable solution: when several cut objects present not so little scraps or present 
several retails. 
Observe that an ideal solution is always acceptable but the reverse is not true. 

This definition (that depends on quantifying terms like small, very small or several objects, little 
scrap or not so little scrap and retail), tries to incorporate general features of the solutions for the CSPUL. 
By not so little scrap we mean a leftover material that is larger than a little scrap but it is not big enough to 
be a retail. 

The sizes of little scrap, not so little scrap or retail are defined by the user (decision maker). The 
decision maker can define these values by his/here experience. Also he/she may use parameters to define 
them, like: 

θ : fraction that defines the largest size for a leftover material to be considered a little scrap for 
standard sized objects, that is, kLθ  is the maximum size for a leftover material to be considered little scrap 

in a standard object of lenght kkL ...,1,k =, , where k  is the quantity of standard object types in stock; 

 β : fraction that defines the largest size for a leftover material to be considered a little 
scrap for non standard sized objects, that is, βLk is the maximum size for a leftover 
material to be considered little scrap in a non standard object of lenght Lk, k = k + 1, 
..., K (the objects of type k +1,..., K are retails); 

 δ : smallest size of a leftover to be considered a retail (for example, δ is the average 
length of the item types demanded). Any leftover larger or equal to δ is considered 
retail, independent of the object type. 

Observe that with the parameters θ and β we make the scrap dependent on the object type. The 
additional parameter β allows the decision maker to define larger “little scraps” for non-standard objects, 
making them more prone to be used compared to the standard objects.  
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The quantities “small”, “very small” and “several” in definition 1 are also defined by the user 
(decision maker). The decision maker can define them by his/her experience or he/she can use, for 
instance, two parameters ξ1 and ξ2, with 0 < ξ1 < ξ2 < 1 and set: 

- Very small number of  objects cut: up to ⎡ξ1η⎤ 
of the objects cut; 

- Small number of objects cut: up to ⎡ξ2η⎤ of the 
objects cut; 

- Several objects cut: above ⎡ξ2η⎤ of the objects 
cut; 
where η is the total number of objects cut in the solution. 

For simplicity, from now on, we use the term acceptable leftover when the leftover is a small 
scrap or a retail. 

With the aim of generating an ideal solution, or at least an acceptable one, we introduce 
modifications in some well known heuristics of the literature to solve the unidimensional CSP so that 
solutions with several objects having not so small scraps are avoided. These are described in the next 
Sections 3 and 4. 

3   Constructive Heuristics 

One heuristic used in the solution of the CSP is the exhaustive repetition (Hinxman, 1980). This 
heuristic builds a “good” cutting pattern for each object type k, k = 1, ..., K, select one of the cutting 
patterns generated (a selection criterion can be, e.g., minimum waste. This selected pattern is associated 
with an object type), use the cutting pattern chosen as much as possible, without exceeding the required 
demand of the items and the availability of the associated object and update the demand of the items and 
the stock of the objects. Two very well known procedures to generate “good” cutting patterns are FFD 
(First Fit Decreasing) and Greedy.  

FFD Procedure 

In the FFD procedure we initially cut the largest item as much as possible or until its demand is 
satisfied (the largest items are chosen first since they are, generally, more difficult to be combined). When 
it is not possible anymore to cut the largest item, the second largest item is considered and, so on, until we 
reach the smallest item. When no new item can be cut, the pattern is complete. 

Greedy Procedure 

In the greedy heuristic the cutting patterns are generated solving a sequence of knapsack problems 
of the form: 
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where il  is the length of item i, i = 1, ..., m, and ri is the residual demand of item i, i = 1, ..., m, 

updated in Step 4. Initially, ri = di, i = 1, ..., m, the required number of items type i. 
These two classical procedures have distinct phylosophies. In the FFD procedure, there is an 

excessive concern in producing the largest items as earlier as possible since they are harder to combine, 
while in the Greedy procedure the best possible cutting patterns are generated first, with no concern about 
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the quality of the future cutting patterns. Next we modify these two procedures to deal with the case of 
usable leftover. 

3.1  FFDL procedure  

We modify the FFD procedure aiming to avoid not so small scraps, that is, trying to obtain at 
least, acceptable solutions.  

The FFDL procedure applies FFD to generate a pattern and, just after the generation, the leftover is 
analysed. If it is an acceptable leftover (a small scrap or a retail) the pattern is accepted. Otherwise, we take 
out an item (the largest one) of the pattern. With the resulting empty space we solve the knapsack problem 
(1)-(3), with the capacity b equal to the leftover material of the generated pattern plus the size of the item 
withdrawn. After solving the knapsack problem, the resulting leftover is analysed and if it is not acceptable, 
an additional item (second largest) of the original pattern is withdrawn. Again, with the space generated a 
new knapsack problem (1)-(3) is solved. In case we have withdrawn an item of each size among all items 
in the pattern, we withdraw again another piece of the largest item. This procedure is repeated until the 
leftover obtained is acceptable or the initial cutting pattern becomes null. In this latter case, the cutting 
pattern is the solution of knapsack problem (1)-(3). For more details, see Cherri et al. (2007).  

3.2   GreedyL procedure 

The GreedL procedure consists in applying the Greedy procedure to obtain a cutting pattern and 
observe the leftover. If acceptable (small scrap or retail), the pattern is accepted, otherwise the largest item 
in the pattern is withdrawn and the leftover is analysed again. If the pattern is still unacceptable the second 
largest item is withdrawn. This process is repeated until we have an acceptable pattern or a null pattern. If 
the pattern is null, we choose among the original patterns, the one that presents the smallest leftover (this is 
not a typical situation but it can occur, for instance, when the stock is formed only by retails). For more 
details, see Cherri et al. (2007).  

4   Residual Heuristics 

Residual heuristics find an integer solution for the unidimensional CSP from the linear 
relaxation of the Integer Programming problem 
 Minimize f(x) = cTx   (4) 
 subject to Ax = d   (5)  
 Ex ≤ e   (6)  
 x ≥ 0 and integer  (7)  
 
each column of the matrix A is associated with a cutting pattern, and E is a matrix of 0’s and 1’s with stock 
constraints. For detail, see Poldi and Arenales (2005). 

The integrality condition on the variables xjk complicates the solution of the problem as m 
increases (it is already difficult when m is of the order of a few dozens). Gilmore e Gomory 
(1961) proposed to solve the problem using column generation after relaxing the integrality 
constraints on the decision variables xjk. From the optimal solution of the relaxed problem, that 
usually is not integer, we determine an integer solution for the original CSP. This integer solution 
can be determined by heuristics that have been developed by several researchers, like Wäscher 
and Gau (1996), Poldi and Arenales (2005), Stadtler (1990), among others. Some of these 
heuristics are presented in subsections 4.1 and 4.2. 
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Definition 2: Let x be an optimal fractional solution for the linear realxation problem (4)-(7) and 
let y be a vector of non-negative integer numbers, close in some sense to x, such that: 

 Ay ≤ d   (8) 

 Ey ≤ e   (9)  

y, obtained from x, is called an approximate integer solution of x.integer solution y of x is by a simple 
truncation:  

 y = (⎣x1⎦, ⎣x2⎦, …, ⎣xn⎦)  (10)   
that satisfies (8)–(9) since all coefficients of A and E are non-negative, x satisfies Ax = d and Ex 
≤ e.  

Definition 3: (Residual Problem): Let y be an approximate integer solution of x, r = d – Ay the 
residual demand and s = e – Ey the residual stock of the available objects. The residual problem is defined 
as (4) – (7) with d = r and e = s. 

In residual heuristics we solve a linear relaxation of problem (4)-(7) and we obtain an approximate 
integer solution. We then solve a linear relaxation of the residual problem (definition 3) and we obtain an 
approximate integer solution and, so on successively, until the residual demand is null or the approximate 
integer solution is null. In the latter case, we apply some method (heuristic or exact) to solve the residual 
problem with just a few items. Next, we present a general structure of these heuristics. 

Residual Algorithm (from Poldi and Arenales, 2005) 

Step 1:   {Start} 
 Do l= 0,  r0 =  d,  s0 = e;  

 
Step 2:  {Determining the continuous optimal solution} 
      Solve the residual problem with r = lr  and  s = ls ; 
      Let lx  be the continuous solution (column generation is used); 
      If lx is integer, then STOP. 
 
Step 3:  {Determining an approximate integer solution} 
     Determine ly , the approximate integer solution of lx . 
     If ly  is a null vector, then go to the Step 5. 

 
Step 4:   {Update} 
      Determine the new residual demand 

1+lr  = lr  - A ly ; 
      1+ls = ls   - E ly ; 

      1+= ll . 

      Go to Step 2. 
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Step 5: 
      Solve the final residual problem with a few items by some method, heuristic or exact. 

4.1  Residual Heuristic by Greedy Rounding (RGR) 

Poldi and Arenales (2005) developed a greedy rounding procedure to obtain an approximate 
integer solution of a continuous solution x in Step 3 of the residual algorithm.  

In Poldi and Arenales’s greedy rounding procedure, Step 3 of the residual algorithm is divided in 
two parts: Pre-processing Step and Rounding Step. For these heuristics, refered to as RGR heuristics, the 
Step 5 of the residual heuristic never occurs for all demand is satisfied since at least for one pattern its 
frequency will be rounded up to its nearest integer and, hence, ly will never be null in Step 3. 

In the Pre-processing Step we order the cutting patterns of the continuous solution lx  (obtained 
in Step 2 of the residual algorithm) according to RGR 1, RGR 2 and RGR 3, described in Poldi and 
Arenales (2005). 

In the Rounding Step, we start with the first cutting pattern, following one of the previous 
orderings, and we round up its frequency, that is, =

11ky ⎡
11kx ⎤ . The other frequencies are set to 0, that is, 

0=jkjy , j = 2, ..., T. Conditions (8) and (9) are tested and, in case of violation, 
11ky is reduced 

successively by a unit, that is, 1
11 11 −= kk yy , unitl we get an approximate integer solution. The value of 

11ky is fixed and we repeat the procedure with the second pattern. We determine a new approximate 

integer solution 
21 21 kk y,y and 0=jkjy , j = 3, ..., T. We repeat the procedure for all cutting patterns.  

To solve the CSPUL, we adapted this greedy rounding to obtain heuristics RGRL – 
versions 1, 2 and 3. 

4.2   RGR Heuristics for the CSPUL 

In the RGRL heuristics we use a bound for the maximum acceptable fraction for a scrap defined 
from the approximate integer solution obtained by using one of the versions of the RGR heuristic (in the 
constructive heuristics, this bound is previously defined by the user, for standard and non-standard objects).  

The RGRL heuristics consist of determining an approximate integer solution by using the greedy 
rounding procedure according to RGR (versions 1, 2 or 3). After, we analyze the leftover material of all 
cutting patterns generated. If the leftover is acceptable, i.e., if it is less than the limit previously calculated, 
then the pattern i of object type ki is accepted and stored, otherwise, the pattern i is rejected and demand of 
the items in pattern i and inventory of the object type ki are updated. After analyzing all the cutting patterns 
generated, we apply the FFDL procedure to solve the residual problem formed by the items of the rejected 
patterns and the remaining objects.  

Other procedures to solve the residual problem in the heuristics type RGRL can be used. We 
suggest the FFDL procedure because this heuristic generates less scrap when compared with the FFD and 
Greedy heuristics, and a smaller quantity of objects cut with retail compared to GreedL heuristic.  

5   Computational Tests 

Computational tests are presented by solving instances from Trkman (2005) and practical 
instances from Abuabara (2006). For these tests, we consider retail any material left with length larger or 
equal to the average of the lengths of the required items. 

To classify the solutions (ideal, acceptable, or undesirable) obtained according to definition 1, we 
use the values ξ1 = 0.03 and ξ2 = 0.1, except for instances 4 and 5, that present small demand.  
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All the heuristics were implemented in DELPHI 6. The experiments were executed in a Pentium 
IV (3 GHz, 2 GB RAM) microcomputer. The implicit enumeration method described in Gilmore and 
Gomory (1961) was used to solve the knapsack problems that arise in the heuristics and in the column 
generation. 

5.1  Results using Instances of the Literature 

In this section we present numerical instances from Trkman (2005) and practical instances from 
Abuabara (2006). 

In the instances of Trkman (2005) we have several types of objects in stock but only one of each 
type, that is, ek = 1 for all k. This is a very special situation where the variables xjk are binary. Due to the 
special characteristic of these instances, we treated the objects as non-standards and we set only the 
parameter β to 0.005. 

For these instances we have information about the solution given by the CUT algorithm, 
therefore, we used the same criteria adopted by Gradisar et al. (1997) for scrap and retail, that is, all the 
material left after cutting an object that is greater or equal to the smallest item demanded is considered 
retail, otherwise it is scrap. 

In the following tables we classify the solutions according to definition 1 and we use ID to denote 
an ideal solution, AC to denote an acceptable solution, and UND to denote an undesirable solution. Also 
we use Obj.Cut. to denote the quantity of objects cut, Tot.Length to denote the total length of the objects in 
stock cut, Total Loss to denote the total length of scraps, Total Ret. to denote the total length of the retails, 
OSScrap to denote the number of objects cut with small scrap, ONSScrap to denote de number of objects 
cut with not so small scrap, and ORetail to denote the number of objects cut with retail. 

Instance 1. K = 20 types of objects with lengths between 2,200 and 6,000 cm; availability of one unit of 
each type of object and m = 5 items demanded according to Table 1. 

 
Table 1 - Data of instance 1 – Items 

Item Length (cm) Demand 

1 235 4 

2 200 51 

3 347 42 

4 471 16 

5 274 37 

 
From Table 1, δ = 200 cm since this is the length of the smallest item. In Table 2 we present the 

computational test results obtained. 

 
Table 2 – Solution of Instance 1 

  Constructive Residual 

 
CUT FFD FFDL Greedy GreedyL 

RGR 

1 

RGRL 

1 

RGR 

2 

RGRL 

2 

RGR 

3 

RGRL 

3 

Obj.Cut. 11 11 13 12 12 10 10 10 10 11 10 

Tot.Length 44136 44027 48506 44715 46104 44079 45245 44079 45245 47141 46507 
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Total Loss 5 639 8 39 1 0 0 0 0 19 0 

Total Ret. 743 0 5110 1288 2715 691 1857 691 1857 3734 3119 

OSScrap 3 1 3 1 1 0 0 0 0 0 0 

ONSScrap 0 10 0 3 0 0 0 0 0 1 0 

ORetail 1 0 7 1 4 1 1 1 1 2 2 

Solution AC UND UND UND UND ID ID ID ID AC AC 

 

From Table 2 we observe that the heuristics RGRL – versions 1, 2 use less objects than the CUT 
algorithm but the total length of the objects is longer, that is, they use longer objects compared to CUT. 
This was expected since CUT gives priority to smaller objects first. We also notice that similar to algorithm 
CUT, heuristics RGRL – versions 1 e 2 concentrate the leftover in a single object. With respect to losses, 
none of these two heuristics generate losses performing better than algorithm CUT with respect to this 
criterion. Note that, in general, the derived heuristics with usable leftover perform better compared to their 
original version by definition 1. For this instance, the classification of the solutions obtained by each 
algorithm is given in the last row of the Table, using definition 1 and the parameters defined previously. 

Instance 2: K = 90 types of objects with lengths between 3,000 and 9,000 cm; availability of one unit of 
each type of object and m = 15 item types demanded according to Table 3. 

Table 3 – Data of instance 3 – Items 

Item Length (cm) Demand 

1 569 34 

2 718 26 

3 520 25 

4 540 12 

5 492 30 

6 547 2 

7 632 6 

8 430 36 

9 750 7 

10 387 20 

11 804 3 

12 389 32 

13 835 18 

14 684 39 

15 687 10 

 
For this instance, δ is equal to 387 cm. 
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Table 4 - Solution of Instance 3 

  Constructive Residual 

 CUT 
FFD FFDL Greedy GreedyL 

RGR 

1 

RGRL 

1 

RGR 

2 

RGRL 

2 

RGR 

3 

RGRL 3 

Obj.Cut. 27 27 29 30 30 22 22 22 22 24 22 

Tot.Length 170504 172055 170343 175473 173814 170621 172114 170621 172114 175742 170989 

Total Loss 2 2009 14 224 0 0 0 0 0 0 0 

Total Ret. 1456 1000 1283 6203 4768 1575 3098 1575 3098 6696 1943 

OSScrap 2 7 9 0 0 0 0 0 0 0 0 

ONSScrap 0 17 0 4 0 0 0 0 0 0 0 

ORetail 1 1 1 2 6 2 1 2 1 3 1 

Solution ID UND AC UND UND AC ID AC ID AC ID 

  
For this larger instance, we observe from Table 4 that the solutions presented by the residual 

heuristics RGRL – verions 1, 2 and 3 and by the CUT algorithm were considered ideal, according to 
definition 1. Also, if we compare the solutions obtained with the modified heuristics compared with the 
ones obtained with the original procedures, we clearly observe improvements in quality, following 
definiton 1. 

We presented here the computational test results of 2 instances only, although we received and 
tested a total of eight instances. In all the 8 instances we observed a similar behaviour, i.e., the performance 
of the modified heuristics were better or equivalent to the performance of algorithm CUT, according to 
definiton 1. The results of the other instances can be seen in Cherri (2006). 

The next set of instances is from Abuabara (2006), whose work is based on the models proposed 
by Gradisar et al. [3]. The instances are from the portfolio of demands of a small Brazilian agricultural 
airplane industry that cuts methalic tubes to build its airplanes whose structure are formed with lattice 
porticoes.  

The instances presented, which characterize small industries, are not classified according to 
definition 1 since the values ξ1 = 0.03 and ξ2 = 0.1 that we planned to use are not appropriate because the 
total number of objects cut is small (small demand) therefore yielding a very small bound for the quantity 
of objects with small scraps, not so small scraps and retails. The choice of the best solution according to 
definition 1 can be made after the quantities “small”, “very small” and “several” are defined by the 
decision maker. 

In the following examples, we have a single type of object in stock, that is, ek = 1, k = 1.  

Since the stock has standard objects only we define solely the parameter θ and we use θ = 0.005. 
The minimum size of the retails is δ = min, i = 1, ..., m}. 

Instance 3: The length of the objects in stock is 3,000 cm and there are 10 of them. m = 5 item 
types demanded according to Table 5. 
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Table 5 – Data of instance 4 – Items 

Item Length (cm) Demand 

1 250 2 

2 273 2 

3 285 4 

4 525 4 

5 1380 4 

 
Any leftover material on a cutting pattern larger than or equal to 250 cm is considered a retail. 

Table 6 – Solution to Instance 4 

 Constructive Residual 

 
FFD FFDL Greedy GreedyL 

RGR 

1 

RGRL 

1 

RGR 

2 

RGRL 

2 

RGR 

3 

RGRL 

3 

Obj.Cut. 4 5 4 5 4 5 4 5 4 5 

Tot.Length 12000 15000 12000 15000 12000 15000 12000 15000 12000 15000 

Total Loss 525 0 240 0 240 0 240 0 244 4 

Total Ret. 1669 5194 1954 5194 1954 5194 1954 5194 1950 5190 

OSScrap 0 0 0 0 0 0 0 0 1 1 

ONSScrap 3 0 1 0 1 0 1 0 1 0 

ORetail 1 3 1 3 1 3 1 3 1 3 

 

From Table 6 we observe that the RGRL algorithms – versions 1, 2, do not generate scraps but 
they present large quantities of retails when compared to the original heuristics. This occurs since the 
usable leftover heuristics tend to eliminate the not so small scraps.  

In this instance and the next ones, we are faced with solutions where we have loss of material but 
a single retail or no loss of material but a larger number of retails. This is a typical situation that we face 
when we solve this problem; we rarely obtain a solution that is good considering all the criteria. So, the 
choice of the best solution is of the decision maker since he/she knows better the reality of the firm.  

Instance 5: The length of the objects in stock is 6,000 cm and there are 10 of them. m = 4 item types 
demanded according to Table 7. 

Table 7 - Data of instance 5 – Items 

Item Length (cm) Demand 

1 370 5 

2 905 5 

3 910 5 

4 930 5 

Any leftover material on a cutting pattern larger than or equal to 370 cm is considered retail. 
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Table 8 – Solution to Instance 5 

 Constructive Residual 

 
FFD FFDL Greedy GreedyL 

RGR 

1 

RGRL 

1 

RGR 

2 

RGRL 

2 

RGR 

3 

RGRL 3 

Obj.Cut. 3 4 3 3 3 3 3 3 3 3 

Tot.Length 18000 24000 18000 18000 18000 18000 18000 18000 18000 18000 

Total Loss 250 0 250 0 515 150 515 150 515 150 

Total Ret. 2175 8425 2175 2425 1910 2275 1910 2275 1910 2275 

OSScrap 0 0 0 0 0 0 0 0 0 0 

ONSScrap 2 0 2 0 2 1 2 1 2 1 

ORetail 1 4 1 3 1 2 1 2 1 2 

 

As we can observe, the original heuristics generate only a single retail to stock but all of them 
present larger losses compared to the losses of the modified heuristics. In the RGRL heuristics– versions 1, 
2 and 3, it was not possible to eliminate all the not so small scraps, but the quantity of retails is smaller 
compared to the other modified heuristics. The choice of the best solution is not trivial since it involves the 
simultaneous analysis of several features. The option of generating only a single retail leads to significantly 
larger losses while the solutions with no loss have a significant number of retails. Again, the instance 
shows the conflicting nature of the objectives and the decision maker must make his/her choice.  

For these instances, solutions with the mathematical models of Gradisar et al. (1997) or Abuabara 
(2006) can be obtained. In these models constraints on the number of retails are imposed. The solutions 
obtained with these models are, in general, similar to the solutions obtained using the modified heuristics. 
When we consider a great variety of object types in stock with large availability as well as a large variety of 
item types with large demands, the mathematical models present a large number of variables and advanced 
solvers like CPLEX, often are not able to produce a solution.  

To evaluate the heuristics described in sections 3 and 4, a test generator was elaborated and 16 
classes of instances were considered. For each class, 20 instances were randomly generated. For these 
randomly generated classes, we also present the results obtained using the COLA algorithm developed by 
Gradisar et al. (1997). Algorithm COLA minimizes the loss of material and/or tries to concentrate them in 
a single object so that they become retail. After analyzing tests, we verify that the RGRL type heuristics 
present the best solutions, i.e., they were classified as ideal. Detail of the instances and solutions can be 
found in Cherri et al. (2007). 

6   Conclusions  

In this article we considered the cutting stock problem with usable leftover, that is, if the resulting 
leftover material of a cut object is large enough it can be used again to cut future demanded items. To deal 
with this problem, we modified some heuristics of the literature that minimizes the trim loss and we 
included the possibility of retails (large leftover) that are not computed as losses. A set of desirable 
characteristics were used to define solutions as ideal, acceptable and undesirable. Still, there exist 
difficulties in pointing out which method performed better for the solutions present important and 
conflicting characteristics, like retail, small scrap, not so small scrap, together with their distribution in the 
cut objects. Other characteristics like the total length of the losses generated, the quantity of new retails 
generated, can also be included. 

The use of mathematical models like those proposed by Gradisar et al. (1997, 1999a, 1999b, 
2005) and Abuabara (2006) are practically suitable for solving problems with a small quantity of objects 
and items of moderate sizes but they are computational time consuming for instances with large quantities 
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of objects and items with large demands. The modified heuristics can handle these instances without much 
effort. 
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