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ABSTRACT 
Several papers presents fault detection and isolation 

techniques for fault in only one sensor; in this paper we 
will present a technique for multiples faults detection and 
isolation in sensors of dynamic systems. Multiples faults 
have less probability to occur but it is not null. So in critical 
applications the system needs to be operational even in this 
situation. 

In this paper we will present a design for a Multiples 
Faults Detection and Isolation (MFDI) system, an example 
to illustrate this technique and its respective results. 

INTRODUCTION 
In critical applications, the fault in a component can 

be catastrophic if the control does not have any degree of 
redundancy, physical or analytical. Therefore, it is 
important to implement a control system with redundancy 
and capability to detect and isolate faults in components as 
fast as possible, such a way, that it can be able to 
reconfigure the use of the remaining components or even 
the control law with faults to an alternative control law. 

In this paper we will only consider sensor faults. To 
test a sensor we need to have its respective redundant 
signal. Redundant signals can be supplied by a redundant 
sensor, physical redundancy, or by a mathematical 
procedure, analytical redundancy. Our technique is to be 
employed in situations where it is not possible to use 
physical redundancy or to improve a voting system 
performance. 

Multiples Faults Detection and Isolation (MFDI) 
technique, presented in this paper, makes use of analytical 
redundancy approach. To do so we will employ observers 

to generate redundant signals [1, 3-8, 13]. These redundant 
signals and the real sensor signal will be processed by a 
decision function to generate fault signatures called 
residues. These fault signatures will be processed by a logic 
function which will allow detecting and isolating the faults. 

This technique can be applied in any dynamic system 
that can be represented by a linear time invariant state 
model. The main steps of this technique are: 1) design the 
observer for the desired dynamic; 2) design the decision 
functions to generate the faults signatures; 3) design the 
logic functions, and 4) evaluate the MFDI system 
performance in detection and isolation of faulty sensors. 

BASIC CONCEPTS 

A fault detection and isolation technique is an 
algorithm to detect and isolate (locate) faulty components 
in a dynamic process, such as sensor biases, actuator 
malfunctions, leaks and equipment deterioration. Fault 
detection is the first step to achieve fault tolerance, but for 
this the redundancy has to be included in the system. The 
redundancy can be either by hardware (physical 
redundancy) or by software (analytical redundancy). 
Hardware redundancy, e.g., an extra sensor or extra 
actuator, can produce several problems associated with: 
cost, space, weight and complexity of the system. Besides, 
it has been observed that redundant components tend to 
have similar functioning expectancies; so the event that 
causes one component to fail probably could cause its 
redundant components to fail soon. Analytical 
redundancy is a mathematical procedure that uses the 
system mathematical model; therefore this approach only 
needs some system computational resources to be 
implemented. 



In this paper we will use the word fault instead of 
failure because strictly speaking the term failure suggests 
complete breakdown while fault may connote something 
tolerable. 

FAULT – Fault can be defined as a malfunction of 
any component of a system, causing since a loss of 
performance up to a total stop of its functions. According to 
[1] the faults can be divided in: 

• Abrupt Fault: fault that suddenly occurs and 
persists in a component. 

• Incipient Fault: fault that develops slowly at a 
component. 

The early detection of an incipient fault can help to 
avoid a total breakdown of the system or even catastrophes 
that could result in loss of significant amount of material or 
serious personal injury. So, it is desired to have a fault 
tolerant system, that is, a system that can continue to do its 
tasks, even when there are hardware faults or software 
errors. But the implementation of such system is not easy to 
do. 

According to the terminology used in [2], the fault 
detection and diagnosis consist of the following tasks: 

• Fault Detection: detection that something is 
wrong in the system. Special emphasis is laid upon 
incipient faults rather than abrupt faults because 
incipient faults are harder to detect. 

• Fault Isolation: determination of the fault origin. 
• Fault Identification: determination of the gravity 

of the fault. 

Other relevant aspects, in fault detection and 
isolation, are the problems relative to false alarm and alarm 
loss. False Alarm is the indication of the occurrence of a 
fault when the system is operating at its normal state. 
Alarm Loss, on the other hand, is the indication that the 
system is operating normally, when it is at a faulty state. 
The decision threshold between the fault state and normal 
state of operation should be chosen in such a way to 
minimize these wrong and conflicting indications. 

REDUNDANCY – A wide class of fault detection 
and isolation methods makes explicit use of the system 
mathematical model, such as the model-based methods, 
which are based on the idea of the analytical redundancy 
[3]. In contrast with the physical redundancy, where 
measurements of different sensors are compared, in the 
analytical redundancy the measurements supplied by a 
sensor are compared with the respective variable value 
obtained through a mathematical model. Such value is 
obtained through calculations that use current and/or 
previous measurements of another variable and the 
mathematical model that describes their relationships. The 
idea can still be extended only for the comparison of the 
values generated analytically, each of them being obtained 

through different calculations. In both cases, the resultant 
differences are called residues. 

RESIDUES – The residues have zero value in ideal 
situations but in practice this rarely happens. The 
deviations of this value are a combined result of the noise, 
parameters change and/or faults. If the deviations due noise 
and parameters are negligible, the residues can be analyzed 
directly for a decision threshold. If the residue is greater 
then the decision threshold we can declare that a fault 
occurred. 

For multiple fault detection and isolation approaching 
the residues must be processed to indicate the fault 
conditions. Based on definitions given in [4], for multiple 
fault detection and isolation in sensors we can define: a 
residue vector r(t) is a vector that its elements have null or 
very small values, in the faults absence, and they have 
values different from zero when a fault occurs. This 
definition implies that a residue vector r(t) has to be 
independent of or, at least, insensitive to system states, 
control input and unmeasured disturbances. 

In case of linear systems, a general structure of a 
linear residue generator can be described as in the Figure 1. 

 
Figure 1 – General structure of a linear residue generator. 

The transfer function from the fault f(t) to the residue 
r(t) is given by: 

r(s) = Hy(s) Gf(s) f(s)  (1) 

Note: for easy identification, we will use bold italic letters 
to represent matrix and vectors and regular italic 
letters for scalar variables. 

DETECTABILITY – The condition, for the system to 
be able to detect a fault is based on the detectability 
definition [4]. Detectability is the capability to detect a 
fault at the vector r(s) when its elements have values 
different from zero. 



However, this condition is not sufficient in some 
practical situations. Assume that we have two residue 
generators as presented in the Figure 1. And in fault 
occurrence the residues behave as in Figure 2. Here we see 
that we have a fundamentally different behavior between 
r1(t) and r2(t), because r1(t) only reflects transitions on the 
faulty signal while r2(t) has approximately the same shape 
of the faulty signal. Thus, r1(t) can not be used in a reliable 
MIFD application even though it is clear that r1(s) ≠ 0. 

 
Figure 2 – Residue vector examples. 

The difference between these two residues in this 
example is the values of r(s = 0). Clearly we can see that 
the residue 1 has r1(s = 0) = 0 while the residual 2 has 
r2(s = 0) ≠ 0. This leads to the definition of strong 
detectability. The fault is said to have strong detectability 
if and only if: 

ri(s = 0) ≠ 0   (2) 

DETECTION AND ISOLATION STRATEGIES 

To design residues strongly detectable, we can base 
on the structured residue methods described in [1] to 
develop the residues vector generator. 

ANALITYCAL REDUNDANT SIGNALS 
GENERATOR – The conception of the Analytical 
Redundant Signals Generator (ARSG) can be based on a 
bank of Reduced Order Observers (ROO) similar to the 
Dedicated Observer Scheme (DOS), described in [1]. As in 
DOS structure, only the system control signal of and one of 
the measures are used as input signal for each ROO. The 
i:th ROO is, therefore, sensitive only to the ith sensor fault. 
An ARSG block diagram for p sensors is presented in 
Figure 3. 

 
Figure 3 – Analytical Redundant Signal Generator. 

DECISION FUNCTIONS – The decision functions 
are used to generate the fault signatures, i. e., they process 
the residue vectors. For this MFDI technique, the decision 
functions are developed considering the module of the error 
between the sensor output and the equivalent values 
obtained by the ROO output. 

The dimension of these residues vectors are (p – 1) 
where p is the number of sensors. 

To easy determine the decision threshold, the sensor 
signals output and respective estimated signals are 
submitted to a scale factor conversion, such a way that all 
signals output will operate at the same range. Range from 
-10uni to +10uni is a good choice. 

So the elements of the ith decision function vector are 
formed by: 





≠=
=

⇒−=
ijpj

pi
SObsy ijiiij ;...,,1

...,,1
,,η  (3) 

where p is the number of sensors, yi is the output of the ith 
sensor, Obsi,j, the ith element of Obsj, is the estimated value 
of yi supplied by jth ROO and Si is the scale factor to be 
applied to the module of the error, to do the normalization 
of the measures supplied by sensors. 

At Figure 4 we show two cases of what happens to 
decision function for sensor i when there is an intermittent 
fault at sensor i and at sensor j. First occurs an intermittent 
fault at sensor j, j ≠ i, during a fault at sensor i and after 
occurs an intermittent fault only at sensor j. Remain sensors 
are kept at normal state. 

When sensor i fault begins, 10s, all elements its 
decision function changes from small values to the sensor i 
fault amplitude value. At 15s occurs a fault at sensor j. As  
ROOj is no more driven by a correct sensor information, its 
estimated values does not reflect correct measures. Besides, 
after sensor j transition from normal state to the fault state, 
the ROOj converges asymptotically to this new state. 
Generally it produces pulses in all residues calculated from 
estimated values supplied by ROOj. During this fault at 
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sensor j the residue ri,j contains incorrect sensor i fault 
amplitude. At 30s finishes sensor i fault and at 35s begins 
again sensor j fault. Now there is only a fault at sensor j. As 
ROOj does not reflect the real state of sensor i, it shows a 
value different from zero. If a FDI system uses only the ri,j 
residue to detect and isolate the fault for sensor i, at first 
sensor j fault it could declare an alarm loss and at second 
sensor j fault it will declare a false alarm. Due this 
behavior, for a MFDI system, an alarm is only raised when 
all residues from the same sensor have values above the 
decision threshold value. 

Figure 4 – Decision function for fault in sensors i and j. 
 

Relative to alarm loss problem, during ROOj 
stabilization time, the residue vector element ri,j value can 
cross the level zero, causing sensor i alarm loss. At Figure 5 
we show an expansion of the influence of this transition at 
the decision function element ηi,j signal. 

To get round to this problem all residues vectors 
module were limited to 1.0% and the threshold were chosen 
as 0.5% of the normalized signal maximum range. After 
that all signals rate decrease were limited to 0.4uni/s, such a 
way to keep all residues module above the decision 
threshold when occur a multiple fault. By this way we can 
prevent the alarm loss and there will be no delay to declare 
the beginning of an abrupt fault. The signal rate decrease 
only causes a delay for the MFDI system to declare the 
fault end. Simulations show that this false alarm does not 
produce a great impact at the control performance, when 
the system is modeled properly. The delay can be easily 
determined. For instance, for the range suggested, the time 
for the signal decrease from 0.10uni to 0.05uni with the 
decrease rate of 0.4uni/s is of 0.125s, so the MFDI system 
will present a maximum delay of 0.125s. 
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Figure 5 – Influence of ROOj stabilization at decision 

function element ηi,j signal. 

DECISION LOGIC – The decision logic is developed 
to test the decision functions against predefined decision 
thresholds. These thresholds must minimize the false alarm 
and alarm loss. 

In this MFDI technique a fault is declared when all 
elements of a decision function have a value above its 
respective decision threshold. So this MFDI system can 
detect up to p - 2 simultaneous fault. 

As all decision function are converted by a scale 
factor, so all decisions threshold value at can be chosen at 
the same level. We adopted the value 0.5% of the 
maximum range of the measure be used as the decision 
threshold by the decision logic. 

ADDITIONAL CONSIDERATIONS – A general 
system employing an MFDI system can be illustrated as in 
Figure 6. Once the fault was detected and isolated, the 
control law can be reconfigured, i. e., the fault signal can be 
changed for another redundant signal. In case where there 
are more than one redundant signal, it should be selected 
that one that presents better information quality for the 
desired signal. 

 
Figure 6 – Structure of a detection and isolation system. 

Control Output
Actuators

Dynamic 
Process Sensors

MFDI 
System 

Act. faults 
Component faults 

Sensors faults

Disturbances 

Fault origin 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

yi

Residue Vector ri

0 5 10 15 20 25 30 35 40 45 50
0
2
4
6
8

|| 
ri|

O
bs

j |
|

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

|| 
ri|

O
bs

k 
||

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Time[s]

|| 
ri|

O
bs

p 
||

 Fault yj

 Fault yi

 Fault yj



MODEL BASED STRUCTURE 

In this paper, a model of a linear system, with time 
invariant parameters, represented in continuous time state 
space is given by: 

( ) ( ) ( )
( ) ( ) ( )ttt

ttt
uDxCy
uBxAx

+=
+=&

  (4) 

where A is a n x n system dynamic matrix; B is a n x r 
control matrix; C is a p x n output matrix; D is a p x r direct 
feedthrough matrix, in our case D = 0; x(t) is a n x 1 state 
vector; u(t) is a r x 1 control vector, and y(t) is a p x 1 
output vector. 

Note: – the time designation t will be suppressed for easy 
represent the mathematics development of the 
equations; 

We can consider three types of general of faults to 
this model: 

• Sensor Fault: modeled here as an additive fault 
of the plant output signal; 

• Actuator Fault: modeled as an additive fault of 
the input signal in the system dynamics, and 

• Component Fault: modeled as a additive fault, i. 
e., any distribution matrix that is added to the 
system dynamics matrix. 

We used the following fault cases for studies [5-8]: 
• Zero Value: the sensor, actuator or component 

begins to supply only the zero value, that is, there 
is an abrupt variation to the value zero; 

• Maximum Value: the sensor, actuator or 
component begins to supply only the maximum 
value in module, that is, the sensor has an abrupt 
variation to its maximum or minimum value; 

• Constant Value: the sensor begins to supply the 
last measurement made before the fault occurs; 

There are also uncertainties about the model and 
disturbances (unmeasured inputs) in the process. If these 
uncertainties and disturbances are structured, that is, if it is 
known how they enter in the system dynamic; this 
information can be incorporated into the model.  

Adding the structured uncertainties and disturbances 
to them model with, eq. (4), the complete model, based on 
[4], can be represented by: 

[ ]
s

ca

fuDCxy
dNfMfuBxAx

++=
++++=&

  (5) 

where fa denotes actuator faults vector, fc(t) is for 
component faults vector, fs is for sensor faults vector, d(t) is 
for disturbances vector acting upon the system, M is the 

distribution matrix for components fault and N is the 
distribution matrix for disturbances acting upon the system. 

REDUCED ORDER OBSERVERS – For a system 
model represented by eq. (4) a procedure to get the 
estimated output vector ŷ from the measure of the ith sensor, 
yi, can be done by observers. As the measure yi is supplied, 
so there is no need for the observer to estimate this measure 
again, we can get it direct from yi. By this way we can 
reduce the order of the observer. Reduced order observers 
can be developed based on the Luenberger Observers [9-
11]. Considering that the observed is controlled by sensor 
1, this estimated value can be represented by: 

1
-1

111ˆ yCxx ==    (6) 

Following this principle, the model can be partitioned 
in: 

uBxAxAx
uBxAxAx

2

2

2221212

1121111

++=
++=

&

&
  (7) 

22 xCy
xCy

=
=

2

111    (8) 

A suitable general structure for the estimation of x2 
[12] can be given by: 

zLx += 12 yˆ    (9) 

where z is a state vector of (p – 1)th-order system given by: 

HuGFzz ++= 1y&   (10) 

The Luenberger reduced order observer block 
diagram is presented in Figure 7: 

 
Figure 7 – Luenberger reduced order observer block 

diagram. 

The estimated error is given by: 
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By eq. (6) we have: 

0xxe =−= 111 ˆ    (12) 

So we are concerned only with e2, which must be 
calculated to be null. It can be done through its differential 
equation: 

zLuBxAxAxxe &&&&& −−++=−= yˆ 2222121222  

( )[ ]
HuGFz

uBxAxACLuBxAxAe
−−−

++−++=

1

1212111122221212

y
&

 (13) 

From eq. (9) we have: 

1xLCexLexLxz 12212212 −−=−−=−= yyˆ  (14) 

Applying eq. (14) in eq. (13) we get: 

( )
( ) ( )uHBLCBxFALCA

xFLCGCALCAFee

2

12

−−+−−+
+−−+=

11212122

11111212&
 (15) 

To the error be independent of x1, x2 and u, the 
matrices that multiply x1, x2 and u must vanish. By this 
consideration we must have: 

F = A22 – LC1A12   (16) 

H = B2 –LC1B1   (17) 

GC1 = A21 – LC1A11+FLC1  (18) 

Then eq. (15) becomes: 

22 Fee =&   (19) 

and hence, for asymptotic stability, the eigenvalues of F 
must lie in the left half of the s plane. 

The reduced order observer is driven only by one 
sensor information, so the gain matrix L become a vector 
and it is unique for the desired eigenvalues and so is the 
matrix F. So we need to find a vector L and matrix F to 
satisfy eq. (16) for the desired eigenvalues. To solve 
eq. (16) we can use the Bass-Gura formula, converted to 
observer design, to get the observer gain vector [12]: 

( )[ ] ( )afOWL −=
−1T    (20) 

where: 

( ) ( ) ( ) ( ) 



=

− TkTTT A...,,A,A 121
1

121121 CACACO T

  (21) 

is the observability test matrix, 
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is a vector with the desired characteristic equation 
coefficients: sk + f1 sk-1 + ...+ fk = 0, 
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is a vector with A22 characteristic equation coefficients: 
sk + a1 sk-1 + ...+ ak = 0, and 
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is the Toeplitz triangular matrix. 

The residue vector is then given by: 

( ) 0xxCyyr 11 =−=−= 1111 ˆˆ   (25) 

( ) eCxxCyyr 2=−=−= 222222     ˆˆ   (26) 

Using the same procedure above we can design all p 
ROOs for the MFDI system. 

FAULT INFLUENCE – The fault influence in the observer 
can be used to detect and isolate the fault. In this paper we 
are concerned only with sensor faults, so the terms: fa, fc, 
and d are considered null, then eq. (8) becomes: 

222

111

xCy
xCy

=
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   (27) 

Using the same procedure as before to get the error, 
we have: 
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Applying eqs. (16), (17) and (18) we get: 



( ) ss ff GFLLFee −+−= && 22  (29) 

So, the error and residue in frequency domain is 
represented by: 

( ) ( ) ( )
( ) ( ) )(22

2

sfs
sfs

sF

sF

GφLCR
GφLE

+−=
+−=

  (30) 

where φF = ( s – F )-1 

Note that the residue will converge to a plane formed 
by the vectors L and φFG if G is an eingenvector of φF. 
Similar result can also be gotten through the Modified 
Detection Filter for Sensor Faults [13]. 

EXAMPLE 

We used the example presented in [13, 14], with some 
changes, to illustrate this methodology. The original 
example is of order 3, as this methodology can detect and 
isolate up to p – 2 multiples faults, we increased the system 
order, adding the state ( ) ( ) ( )tx.tx.tx 314 0101 −=&  and the 
element A(1,4) = 1 to keep the observability matrices, 
eq (21), with full rank for all ROOs. We also added 
element B4 = 1 to the B vector to keep the system 
controllable. It was adopted the output matrix C = I4, due 
the restriction of the reduced order methodology supplied 
by eq. (6). So the system model is represented by the 
following matrices and vectors: 
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B , C = I4, D = 0 

The pair (A, B) is completely controllable and the pair 
(A, C) is completely observable. The eigenvalues and 
eigenvectors of A are: 

Λ = {6.70062, 1.31370, -1.82787, -0.186450} 





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


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
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0.197549    0.061789    0.354219     0.604811  
0.512290-  0.210945-  0.652878-   0.514277  
0.527448    0.622103    0.614589-   0.602986  

AV  

As we can see the system is unstable. At Figure 8 
there is the plant response to a unitary step input beginning 
at 1s. 
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Figure 8 – Plant response to a step input. 

CONTROL SYSTEM – Control system is not part of 
a MFDI system design. How the plant is unstable we had to 
design a control system to stabilize it. As the plant is 
completely controllable and all state variables can be 
measured, we used a pole place methodology for a type 1 
servo system using a type 0 plant employing the 
Ackermann’s formula [15]. After several tests we chose the 
following close-loop poles which permit to get an 
overshoot less then 4% and a stabilization time less then 4s 
for a step input: 

Λd = {-1.25, -1.50, -1.75, -2.00, -2.25} 

The block diagram of the controlled plant is showed 
at Figure 9, the controller gains calculated are showed at 
Table 1, and at Figure 10 we have the controlled plant 
response to the same step input used before. 
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Figure 9 – Block diagram with the control system. 

Table 1 – Controller gains. 

Gain Value 

Gr 

9.60815 
41.1739 
67.6015 
2.40057 

Ge -0.984375 

Note: all the values were calculated using Matlab double 
precision but they are showed with 6 digits 
approximation. 
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Figure 10 – Controlled plant response to a step input. 

To evaluate the MFDI system the controlled plant was 
submitted to the input signal showed at Figure 11. The 
plant output signal for each sensor is showed at Figure 12. 
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Figure 11 – Input signal applied to the system. 
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Figure 12 – Plant output signal. 

REDUCED ORDER OBSERVERS DESIGN – The 
reduced order observers for each sensor were calculated 
using the following poles: 

ΛO = [ -7.0   -7.5   -8.0] 

Applying the Bass-Gura methodology to design the 
reduced order observer we got the following matrices and 
vectors gains presented at Table 2. 

Table 2 – Observers matrices and vectors gains. 

Desc. Param. Values 

L1 
-8.77419 
10.5806 
  3.50000 

F1 
  28.3226   38.0968    8.77419 
-29.7419 -37.3226 -10.5806 
-10.5000 -14.0000   -4.50000 

G1 
 186.290 
-170.968 
  -70.7500 

Obs 1 

H1 
-25.3226 
  31.7419 
  11.5 

L2 
-5.60811 
 7.70270 
-9.85135 

F2 
  5.60811   20.8243  1.00000 
-7.70270 -18.1081  0.00000 
10.8514   29.5541 -1.00000 

G2 
 133.318 
-109.689 
 196.345 

Obs 2 

H2 
  2.60811 
 -7.70270 
10.8514 

L3 
  7.25000 
26.0000 
26.7500 

F3 
-12.5000 1.00000  0.00000 
-49.0000 0.00000  1.00000 
-53.5000 1.00000 -1.00000 

G3 
  -97.8750 
-454.500 
-522.375 

Obs 3 

H3 
  1.00000 
-3.00000 
  1.00000 

L4 
  6.41935 
45.9355 
20.5000 

F4 
2.00000 3.00000   -5.41935 
2.00000 5.00000 -45.9355 
3.00000 4.00000 -20.5000 

G4 
   45.9677 
-653.226 
-195.750 

Obs 4 

H4 
  -5.41935 
-45.9355 
-23.5000 



At Figure 13 we have the residue vector between the 
measure supplied for the sensor 1 and the values estimated 
by the observers 2, 3 and 4. Note that the residues are low 
proving that the observers designed have a good 
performance in estimating the sensor 1 signals. The same 
performances were also gotten in estimating other sensors 
signals. 
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Figure 13 – Residue vector for the sensor 1 estimated 

signals. 

SCALE FACTOR – The scale factors were calculated 
using approximately the maximum range module of each 
signal added of 20%. These ranges are converted to a 
normalized range from -10uni to 10uni. So evaluating all 
the signals in the same range becomes easier to define the 
threshold values. At Table 3 we have approximately the 
maximum magnitude module for each sensor output signal, 
related to the input signal showed at Figure 11, and the 
scale factor to convert these signals to the range specified 
above. 

Table 3 – Maximum output signal range module and 
respective scale factor. 

Output Module 
Max. Value 

Scale Factor 

y1 5 10/6.0 
y2 5 10/6.0 
y3 2 10/2.5 
y4 4 10/5.0 

 

FAULT CASE – To show the MFDI performance we 
simulated intermittent faults at the sensors. The fault types 
and activation time intervals are showed at Table 4. At 
Figure 14 we have the respective faults time diagram. We 
can see simple and double intermittent faults. The 
simulation was done in the Simulink – Dynamic System 
Simulation for Matlab environment, version 5.0 
(release 13), using fixed step integration of 0.01s and 
ode5 – Dormand-Prince solver. 

Table 4 – Fault types and activation time intervals. 

Sensor Fault Type Fault Intervals 
1 Constant Value 5s to 50s 

2 Maximum Value 10s to 15s 
60s to 90s 

3 Zero Value 
25s to 30s 
65s to 70s 

100s to 115s 

4 Minimum Value 

40s to 45s 
80s to 85s 

105s to 110s 
125s to 130s 
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Figure 14 – Faults time diagram for the sensors. 

At Figure 15 we have the sensor output signals in 
faults presence. The signals generated by sensor 1 decision 
function are showed at Figure 16. As mentioned before, 
when one observer is driven by faulty information the 
estimated values does not reflect the real measure, so it can 
indicate a false alarm or an alarm loss. 

 
Figure 15 – Sensors output signals in faults presence. 
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Figure 16 – Signals generated by decision function for 

residue R1. 

DECISION THRESHOLD – The decision threshold value 
must be chosen such a way to minimize the false alarm and 
the alarm loss. So its value must be chosen between the 
maximum residue value, when there is no fault, to the 
maximum acceptable measure error value. For this MFDI 
technique, when there are multiples faults, it is necessary to 
define the amplitude signal limiters, the decision threshold 
to avoid false alarm and the rate decrease signal limiters to 
avoid alarm loss, for each residue module after the 
application of the scale factor. 

In the present example it was chosen that the 
maximum acceptable error value for the sensor measure is 
0.05uni. Checking the residue signals for alarm loss we 
chose the signal limiter to 0.1uni and a signal decrease 
limiter to 0.4uni/s. Using these nonlinearities we got a 
conditioned signal showed at Figure 17 which permits to 
reduce the alarm loss. 
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Figure 17 – Conditioned signal generated by decision 
function for sensor 1. 

This methodology only declares a fault when all 
conditioned signal is above the decision threshold value 

0.05. Its is easy to see at Figure 17 that this situation, for 
sensor 1, only occurred approximately during the time 
interval from 5s to 50s. A more precise measure at the 
simulations results we got the time interval of 5.04s to 
50.12s. It must be remembered that this sensor was subject 
to a constant fault, what contributed for the delay in the 
beginning of the detection. 

The same considerations were applied to the others 
residues. By this way the MFDI can detect multiple sensor 
faults. At Figure 18 we have the faults isolated by the 
system and at Table 5 we have the respective fault detection 
and isolation time intervals. 
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Figure 18 – Fault detection and isolation for multiple faults. 

Table 5 – Fault detection and isolation time intervals. 

Sensor Fault Type Fault 
Intervals 

FDI Time 
Intervals 

1 Constant 
Value 5s to 50s 5.04s to 50.12s 

2 Maximum 
Value 

10s to 15s 
60s to 90s 

10s to 15.12s 
60s to 90.12s 

3 Zero Value 
25s to 30s 
65s to 70s 

100s to 115s 

25s to 30.12s 
65s to 70.12s 

100s to 115.12s 

4 Minimum 
Value 

40s to 45s 
80s to 85s 

105s to 110 
125s to 130s 

40s to 45.12s 
80s to 85.12s 

105s to 110.12s 
125s to 130.12s 

 
CONCLUSIONS AND COMMENTS 

The MFDI methodology presented allows detecting 
up to p-2 multiple sensors fault. The decision threshold is 
easy to choose for simple fault. Unfortunately, it is not so 
easy to choose when there is more than one fault because 
the observer that is driven by a faulty sensor does not 
estimate correct values which can cause an alarm loss or 
false alarm. 



Limiting the signal above to the decision threshold 
and applying a decrease signal limiter rate for the signal is a 
way to filter the signal in order to reduce alarm loss and 
false alarm rate without reducing the detection of the fault 
beginning. 

The conversion of the signals in the same range 
makes it easier to see the estimated signal behavior when 
the respective observer is driven by fault information. 

A new challenge will be to develop a MFDI system 
that allows detecting up to p multiple sensor faults. 
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