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CMB and LSS constraints on a single-field model of inflation
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A new inflationary scenario whose exponential potential V (Φ) has a quadratic dependence on
the field Φ in addition to the standard linear term is confronted with the tree-year observations of
the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number
of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the pri-
mordial power spectrum (ns) and its running (dns/d ln k) depend on the dimensionless parameter
α multiplying the quadratic term in the potential. In the limit α→ 0 all the results of the standard
exponential potential are fully recovered. For values of α 6= 0, we find that the model predictions
are in good agreement with the current observations of the Cosmic Microwave Background (CMB)
anisotropies and Large-Scale Structure (LSS) in the Universe.

PACS numbers: 98.80.-k

I. INTRODUCTION

Since the detection of the Cosmic Microwave Back-
ground (CMB) anisotropies by the COBE satellite in
1992 [1], great improvements in the quality of the CMB
data has been achieved, mainly from very recent baloon
and satellite experiments, such as the BOOMERANG
[2] and the Wilkinson Microwave Anisotropy Probe
(WMAP) [3, 4]. In what concerns the possible im-
plications on the inflationary epoch, for instance, the
current three-year WMAP (WMAP3) data seemed, at
a first moment, to have precision enough to discrimi-
nate between some single-field inflationary models. In
fact, soon after the WMAP3 data release, some au-
thors arrived to the conclusion that quartic chaotic in-
flationary scenarios of the form V (Φ) ∼ λΦ4 were ruled
out, while quadratic chaotic inflationary models with
potential, V (Φ) ∼ m2Φ2, agreed only marginally with
the observational data [4, 5, 6]. The original WMAP3
parameter-estimation analysis also pointed to a spectral
index smaller (ns ≃ 0.95) than the Zel’dovich spectrum
of density perturbations, for which adiabatic perturba-
tions have a scale-invariant spectral index (ns = 1). Al-
though compatible with some theoretical predictions [7],
the latter conclusion was rediscussed by a recent analysis
of the WMAP3 data from a more sophisticated statistical
approach of model selection and systematic effects, lead-
ing to values of ns still compatible with the Zel’dovich
prediction [8].

The WMAP3 data also place an upper limit on the
tensor-to-scalar ratio, i.e., r < 0.55 (at 95.4% c.l.),
whereas a joint analysis involving the WMAP3 data and
the large-scale power spectrum of luminous red galaxies
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in the Sloan Digital Sky Survey (SDSS) provides r < 0.33
(also at 95.4% c.l.) [9]. In light of all these observa-
tional results, a number of authors have tested the via-
bility of different types of inflationary models (see, e.g.,
[5, 6, 10, 11, 12]). As an example, very recently, the au-
thors of Ref. [12] revived a interesting phenomenological
model with a simple slowly-rolling scalar field that, in
the light of the WMAP3 data, does not present a pure
de Sitter inflationary expansion, but produce a Zel’dovich
spectrum, i.e., ns = 1.

Given the current availability of high precision cosmo-
logical data and, as consequence, the real possibility of
truly ruling out some theoretical scenarios, it is timely to
revive old inflationary models (as done in Ref. [12]), as
well as to investigate new ones. In this paper, motivated
by a transient dark energy scenario recently proposed in
Ref. [13], we study a single, minimally-coupled scalar
field model of inflation whose evolution is described by
an exponential potential V (Φ) that has a quadratic de-
pendence on the field Φ in addition to the standard lin-
ear term. Such a potential is obtained through a simple
ansatz and fully reproduces the Ratra-Peebles scenario
studied in Ref. [14] (see also [15, 16]) in the limit of the
dimensionless parameter α → 0. For all values of α 6= 0,
however, the potential is dominated by the quadratic con-
tribution and admits a wider range of solutions than do
conventional exponential potentials.

In this context, our aim here is to test the viability
of this new class of inflationary scenario in light of the
current CMB and LSS data. In Sec. II we deduce the
inflaton potential V (Φ) and discuss the basic features of
the model. The slow-roll inflation driven by this potential
along with some important observational quantities, such
as the spectral index, its running, and the ratio of tensor-
to-scalar perturbations, are discussed in Sec. III. We
also confront our theoretical results with the most recent
CMB and LSS observations, as analized in Refs. [4, 8, 9].
Finally, the main results of this paper are discussed and
summarized in the Sec. IV.
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FIG. 1: The potential V (Φ) as a function of the field [Eq. (6)]
for some selected values of the parameter α.

II. SINGLE-FIELD MODEL

In what follows we assume that the Universe is nearly
flat, as evidenced by the combination of the position of
the first acoustic peak of the CMB power spectrum and
the current value of the Hubble parameter [4]. To begin
with, let us consider a single scalar field model whose
action is given by

S =
m2

pl

16π

∫

d4x
√
−g

[

R− 1

2
∂µΦ∂µΦ− V (Φ)

]

. (1)

In the above expression, mpl ≡ G−1/2 ≈ 1019GeV is the
Planck mass and we have set the speed of light c = 1.

For an inflaton-dominated universe, the Friedmann
equation is written as

H2 =

(

ȧ

a

)2

=
8π

3m2
pl

[

1

2
Φ̇2 + V (Φ)

]

, (2)

where a(t) is the cosmological scalar factor and dots de-
note derivatives with respect to time. By combining Eq.
(2) with the conservation equation for the Φ component,
i.e., ρ̇Φ + 3H(ρΦ + pΦ) = 0, we obtain

∂Φ

∂a
=

√

−
m2

pl

8πa

1

ρΦ

∂ρΦ

∂a
, (3)

where ρΦ = 1
2
Φ̇2 + V (Φ) and pΦ = 1

2
Φ̇2 − V (Φ) are,

respectively, the inflaton energy density and pressure.
Following Ref. [13], we adopt an ansatz on the scale

factor derivative of the energy density, i.e.,

1

ρΦ

∂ρΦ

∂a
= − λ

a1−2α
, (4)

where α and λ are positive parameters, and the factor
2 was introduced for mathematical convenience. From
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FIG. 2: The predicted number of e-folds N(Φ) as a function
of the field for some selected values of the parameter α. The
horizontal lines correspond to 1σ limit on the number of e-

folds (N = 54± 7) discussed in Ref. [18].

a direct combination of Eqs. (3) and (4), the following
expression for the scalar field is obtained

Φ(a) =
1√
σ

ln1−α (a) , (5)

where σ = 8π/λm2
pl and the generalized logarithmic func-

tion ln1−ξ, defined as ln1−ξ(x) ≡ (xξ − 1)/ξ, reduces to
the ordinary logarithmic function in the limit ξ → 0 [17].
The potential V (Φ) for the above scenario is easily de-
rived by using the definitions of ρΦ and pΦ and inverting1

Eq. (5), i.e.,

V (Φ) = f(α; Φ) exp

[

−λ
√

σ

(

Φ +
α
√

σ

2
Φ2

)]

, (6)

where f(α; Φ) ∝ [1 − λ
6
(1 + α

√
σΦ)2]. The most impor-

tant aspect to be emphasized at this point is that in the
limit α → 0 Eqs. (5) and (6) fully reproduce the expo-
nential potential studied by Ratra and Peebles in Ref.
[14], while ∀ α 6= 0 the scenario described above repre-
sents a generalized model which admits a wider range of
solutions. This means that all the physical observational
quantities derived in the next section have the ordinary
exponential case as a particular limit when α → 0. For
the sake of completeness, in Fig.(1) we show the poten-
tial V (Φ) as a function of the field for several values of

1 Note that the inversion of Eq. (5) can be more directly ob-
tained if one defines the generalized exponential function as
exp1−ξ(x) ≡ [1 + ξx]1/ξ, which not only reduces to an ordi-
nary exponential in the limit ξ → 0 but also is the inverse
function of the generalized logarithm (exp1−ξ [ln1−ξ(x)] = x).
Thus, the scale factor in terms of the field can be written as
a(Φ) = exp1−α[

√
σΦ] [13].
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FIG. 3: The ns − r plane for some selected values of the
parameter α to first-order in slow-roll approximation. Note
that, similarly to the intermediate inflationary model of Ref.
[12], it is possible to obtain a scale-invariant spectrum for
nonvanishing values of r.

the parameter α and a fixed value of λ = 10−6 (see [13]
for details).

III. SLOW-ROLL INFLATION

A. Slow-roll Parameters

In this background, the energy conservation law for the
field can be expressed as Φ̈ + 3HΦ̇ + V ′ (Φ) = 0, where
primes denote derivative with respect to the field Φ. In
the so-called slow-roll approximation, the evolution of
the field is dominated by the drag from the cosmological
expansion, so that Φ̈ ≈ 0 or, equivalently, 3HΦ̇+V ′ ≃ 0.
With these simplifications, the slow-roll regime can be

expressed in terms of the slow-roll parameters ǫ and η,
i.e., [22, 23]

ǫ =
m2

pl

16π

(

V ′

V

)2

=
λ

2

[λy2 − 2(α + 3)]2y2

(6− λy2)2
, (7)

and

η =
m2

pl

8π

V ′′

V
=

(5α + 6)λy2 − λ2y4 − 2α(α + 3)

6− λy2
, (8)

where, for the sake of simplicity, we have introduced the
variable y = 1+α

√
σΦ. Note that, in the limit α→ 0, the

above expressions reduce, respectively, to ǫα→0 = λ
2

and
ηα→0 = λ, as expected from conventional exponential
potentials.

For the above scenario, we can also compute the pre-
dicted number of e-folds by using Eq. (5) and (7), i.e.,

N =
∫

Hdt = ln [1 + α
√

σΦN ]
1/α

, which reduces, in the
limit α → 0, to Nα→0 ∝ ΦN. The result of this calcu-
lation is shown in Fig. (2) as the N − Φ plane for some
selected values of the index α. The horizontal lines in
the figure correspond to the 1σ bound on the number of
e-folds discussed in Ref. [5], i.e., N = 54± 7. To test the
viability of the inflationary scenario here discussed, in all
the subsequent analyses we follow Ref. [5] and adopt the
interval N = 54 ± 7. Without loss of generality, we also
fix the value of the constant λ at ≃ 10−6.

B. Spectral Index

In order to confront our model with current observa-
tional results we first consider the spectral index, ns, and
the ratio of tensor-to-scalar perturbations, r. In terms of
the slow-roll parameters to first order, these quantities,
defined as ns−1 = 2η−6ǫ and r = 16ǫ, are now expressed
as

ns − 1 = − [λy2 − 2(α + 3)]2y2

(6 − λy2)2
[3λ + 2(6− λy2)] +

2λy2(α − 6) + 4(α + 3)(α + 6)

6− λy2
, (9)

and

r = 8λ
[λy2 − 2(α + 3)]2y2

(6 − λy2)2
. (10)

As can be easily verified, in the limit α → 0, the above
expressions reduce, respectively, to (ns−1)α→0 = −λ and
rα→0 = 8λ. For r < 0.55 (95.4% c.l.), as given by cur-
rent CMB data [4], one obtains from Eq. (10) ǫ < 0.03,
which is in agreement with the slow-roll approximation
discussed earlier and adopted in our analysis.

Figure (3) shows the ns − r plane, given by

r =
8

γ − 3
(ns − 1) , (11)

where

γ =
2(λy2 − 6)

λy2

[

1− λy2(α− 6) + 2(α + 3)(α + 6)

(λy2 − 2α− 6)2

]

,

(12)
for some selected values of α. Note that, in the limit
α → 0 or, equivalently, γ → 2, Eq. (11) reduces to

INPE ePrint: sid.inpe.br/mtc-m17@80/2008/05.14.11.48 v1 2008-05-15



4

0.07 0.08 0.09 0.10
-10

-8

-6

-4

-2

0

 N=47
 N=54
 N=61

 

 

dn
s/dl

n k
 (1

0-3 )

αααα
-0.20 -0.15 -0.10 -0.05 0.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2
 N=47, αααα=0.1
 N=54, αααα=0.08
 N=61, αααα=0.09

 

 

r
dn

s
/dln k

FIG. 4: a) The α−dns/d ln k plane for the number of e-folds lying in the interval N = 54±7. Note that, as α→ 0, dns/d ln k also
→ 0, as expected from exponential potentials. The same conclusion on dns/d ln k also persists for negative values of the index
α. b) The dns/d ln k− r plane for α = 0.1, 0.09 and 0.08. Here, the hachured region corresponds to −0.13 ≤ dns/d ln k ≤ 0.007
and r < 0.38 (at 95.4%), as given in Ref. [8].

rα=0 = 8(1 − ns), as predicted by exponential models
[8]. Also, and very important, we note from this figure
that, for these selected values of the parameter α, the
inflationary scenario discussed in this paper seems to be
in agreement with current observational data from CMB
and LSS measurements. As a first example, let us take
the tensor fraction r to be negligible. In this case, the
analyses involving WMAP3 plus SDSS and WMAP3 plus
2dFGRS data provide, respectively, ns = 0.980 ± 0.020
and ns = 0.956 ± 0.020 (68.3% c.l.), which are clearly
in agreement with the model predictions (at 2σ level)
shown in Fig. (3), i.e., ns ≃ 1.03 (N = 47), ns ≃ 1.01
(N = 54), and ns ≃ 0.97 (N = 61). Similar conclusions
can also be obtained by considering r 6= 0. In this case,
the current data from WMAP3 plus SDSS provides a
tensor fraction r < 0.33 and n = 0.980± 0.020, while the
model discussed in this paper predicts for this interval
of r, ns ≥ 0.95 (N = 47), ns ≥ 0.92 (N = 54), and

ns ≥ 0.88 (N = 61). From this figure, it is also possible
to obtain a scale-invariant spectrum (ns = 1) for values
of r 6= 0, as discussed in the context of the intermediate
inflationary model of Ref. [12].

C. Running of the Spectral Index

The running of the spectral index in the inflationary
regime, to lowest order in the slow-roll approximation, is
given by [19]

dns

d ln k
= −2ξ2 + 16ǫη − 24ǫ2 (13)

where ǫ and η are, respectively, the first and the second
slow-roll parameters, defined in Eqs. (7) and (8). Here,
ξ2 is the third slow-roll parameter, which is related with
the third derivative of the potential by

ξ2 =
m2

pl

64π2

V ′′′V ′

V 2
= λ

[6α(2α + 3)− 3(α + 2)λy2 + λ2y4][λy2 − 2(α + 3)]y2

(6− λy2)2
. (14)

Note that in the limit α → 0, the ξ parameter reduces
to ξ2

α→0 = λ2 and, as expected for usual exponential
potentials, the running, expressed by Eq. (13), vanishes.

This and other features of the inflationary scenario dis-
cussed in this paper are shown in Figs. (4a) and (4b). In
Fig. (4a) the α− dns/d ln k plane is displayed for values

of the number of e-folds lying in the interval N = 54± 7.
Note that, differentlty from other models discussed in
the literature (see, e.g. [11]), this scenario predicts only
positive values for the running of the spectral index,
which seems to be in full agreement with the WMAP3
data (−0.17 ≤ dns/d lnk ≤ −0.02 at 95.4% c.l.) but
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only partially compatible with the joint analysis involving
WMAP3 and SDSS data (−0.13 ≤ dns/d ln k ≤ 0.007 at
95.4%) of Ref. [8]. In Fig. (4b) we show the dns/d ln k−r
plane for α = 0.1, 0.09 and 0.08. Here, the shadowed re-
gion corresponds to the 95.4% limit on the ratio of tensor-
to-scalar pertubations, i.e., r < 0.38 [8]. As can be seen
from this Panel, for two out of the three combinations of
the pair α − N , the model predictions agree reasonably
well with the current bounds from CMB and LSS data.

IV. FINAL REMARKS

Primordial inflation [20] constitutes one of the best and
most successful examples of physics at the interface be-
tween particle physics and cosmology, with tremendous
consequences on our view and understanding of the ob-
servable Universe (see, e.g., [21, 22, 23] for review). Be-
sides being the current favorite paradigm for explaining
both the causal origin of structure formation and the
Cosmic Microwave Background (CMB) anisotropies, an
inflationary epoch in the very early Universe also pro-
vides a natural explanation of why the Universe is nearly
flat (Ωk ≃ 0), as evidenced by the combination of the po-
sition of the first acoustic peak of the CMB power spec-
trum and the current value of the Hubble parameter [4].

In this work, we have discussed cosmological implica-

tions of the single, minimally-coupled scalar field model
recently proposed in Ref. [13], whose evolution is de-
scribed by an exponential potential V (Φ) that has a
quadratic dependence on the field Φ in addition to the
standard linear term. As discussed in Sec. II, this poten-
tial fully reproduces the Ratra-Peebles inflation studied
in Ref. [14] in the limit of the dimensionless parameter
α → 0. We have calculated the main observable quan-
tities in the slow-roll regime and shown that, even for
values of the number of e-folds in the restrictive interval
N = 54± 7 [5], the predictions of the model for values of
α 6= 0 seem to be in good agreement with current bounds
on these parameters from CMB and LSS observations, as
given in Refs. [8, 9]. Similarly to the intermediate infla-
tionary scenario discussed in Ref. [12], it is also possible
to obtain a scale-invariant spectrum (ns = 1) for van-
ishing values of the tensor-to-scalar ratio r. For values
of r ≃ 0 or, equivalently, ns ≃ 1, we have found that
the theoretical prediction for the running of the spectral
index approaches to zero from negative values, which is
compatible with current observations from CMB data,
i.e., −0.17 ≤ dns/d ln k ≤ −0.02 (at 95.4% c.l.) [4].
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