
Advance adherence to the upcoming standard ISO/IEC 29119
*

Fernando R. Villas-Boas
†
 Érika R. C. de Almeida Bruno T. de Abreu

Sofist - Intelligent Software

Testing

Institute of Computing,

Unicamp

Sofist - Intelligent Software

Testing

Campinas SP, Brazil Campinas SP, Brazil Campinas SP, Brazil

fernando.villasboas@sofist.com.br erikarca@gmail.com bruno.abreu@sofist.com.br

*
 The authors would like to thank the support of CNPq given through research grant #555473/2010-4.

†
 Corresponding author

Abstract

In this paper we study the upcoming new standard for

software testing ISO/IEC 29119. The study stemmed

from the need of conformance to standards for the auto-

mated software testing tool Crux, and it included its

grounding standards and early drafts. We justify an ear-

ly adherence to the standard and we show how this is

being done in practice in the development of Crux.

1. Introduction

The Working Group 26 (WG26) of the ISO/IEC

JTC1/SC7 Software and Systems Engineering commit-

tee has recently announced the release of advanced

drafts of the new international software testing standard

ISO/IEC 29119 Software Testing [6].

According to the working group,

The aim of ISO/IEC 29119 Software Testing is to

provide one definitive standard that captures vo-

cabulary, processes, documentation and tech-

niques for the entire software testing lifecycle.

This new standard will officially replace some exist-

ing IEEE and BSI standards for software testing, solv-

ing conflicts in definitions and procedures, and the an-

nounced timeline of the standard states that the final in-

ternational standard will be published in June, 2012.

Whenever a new standard appears, particularly one

announced to be published only in more than one year,

some natural questions arise.

First, why select this standard as a main guideline

for software testing in the place of others?

Second, assuming we are convinced about the up-

coming standard but considering that it will be pub-

lished only in more than one year, is there anything we

should do about it at this early stage?

Finally, what can we do now in practice?

In this work we studied these two first questions and

we show what we are doing in practice in the develop-

ment of a tool for the automated generation of executa-

ble test cases.

The remainder of this work is organized as follows:

Section 2 describes a brief history of the standards in

software testing. Section 3 describes the outline of our

proposal, while Section 4 presents our first conclusions

and how we are going to continue our research.

2. History of standards in software testing

The first formal conference on software testing was

held in June 1972 [3], and the first software testing book

[3] was published as an outgrowth of the 1972 conference.

In the following years, national standards began de-

veloping and resulted in the IEEE 829 Standard for

Software Test Documentation in 1983 [4] and IEEE

1008 Standard for Software Unit Testing in 1987 [5].

A natural critique of these standards followed.

In 1989, a meeting of the Specialist Interest Group

on Software Testing (later to affiliate with the British

Computer Society), agreed that

…existing testing standards are generally good

standards within the scope which they cover, but

they describe the importance of good test case

selection, without being specific about how to

choose and develop test cases.

The group developed the standard BS-7925-2 Standard

for Software Component Testing [1] and its companion

standard for definitions, BS 7925-1 Vocabulary of

Terms in Software Testing [2], published in 1998.

The group stated that

The most important attribute of this Standard is

that it must be possible to say whether or not it

has been followed in a particular case (i.e. it

must be auditable). The Standard therefore also

includes the concept of measuring testing which

has been done for a component as well as the as-

sessment of whether testing met defined targets.

… the standard is deliberately limited in scope to

cover only the lowest level of independently test-

able software. … the term “component” has

been chosen rather than other common syn-

onyms such as “unit”, “module”, or “program”

to avoid confusion...

Two points should be noticed from the group’s

comments. First, this is a standard intended to be audit-

able, thus having the necessary level of details and the

necessary metrics for such auditing. Second, and prob-

ably because it was the first standard to address details

of software testing, it is a standard deliberately limited

in scope, i.e., unit testing.

Again, some natural critiques followed. In an early

presentation in 2007, Murnane [8] pointed that

 Existing standards do not cover all aspects of Soft-

ware Testing Life Cycle:

- BS 7925-2 only covers unit testing;

- BS 7925-1 testing vocabulary written (exclusive-

ly) for BS 7925-2;

- Missing higher level methods such as Use Case

Testing and non-functional testing approaches such

as Performance Testing, Security Testing, etc.

- Risk-based testing and test strategy development

not covered;

 Static Testing not covered;

 Potential conflict in definitions, processes and pro-

cedures;

 Practitioners may not know which standard to follow.

These and other later critiques and motivation [9],

such as the present lack in present standards of

a) organizational test policy and strategy,

b) project test management,

c) common system and acceptance testing techniques,

and

d) non-functional testing,

as well as the sheer fact that the replacement of many

standards into a single one is an important added value

per se, led to the formation of a working group of the

ISO/IEC JTC1/SC7 Software and Systems Engineering

committee to address these issues, by means of a new

standard, ISO/IEC 29119.

Its development began in May 2007, and currently

comprises four parts: 1) Definitions and Vocabulary, 2)

Test Process, 3) Test Documentation, and 4) Test

Techniques.

It will officially replace the four IEEE and BSI

standards for software testing mentioned before: IEEE

829 Test Documentation, IEEE 1008 Unit Testing, BS

7925-1 Vocabulary of Terms in Software Testing, and

BS 7925-2 Software Component Testing Standard.

3. How to adhere in advance

Although the final publication of the standard is on-

ly due in 2012, there are many publicly available hints

on how the standard will be, at least regarding its basis

and outline.

First, the base standards for each part of the new

standard are [9]:

 Part 1, Definitions & Vocabulary: BS 7925-1

 Part 2, Test Process: BS 7925-2 and IEEE 1008

 Part 3, Test Documentation: IEEE 829

 Part 4, Test Techniques: BS 7925-2

Second, the final committee drafts for parts 2 and 3,

and the committee drafts for parts 1 and 4 are already

available, upon affiliation in the country’s national

standardization body (ABNT in Brazil) but subject to

some nondisclosure clauses.

These drafts are not final, but they are mature

enough to allow for the design of screens and forms,

for instance, and to show in which direction we should

plan future test processes.

Here we apply these ideas for advance adherence of

an automated test tool and initially we stick to Test Do-

cumentation and Test Techniques.

3.1. Automated testing

Testing is a fundamental part of software quality

evaluation, using metrics like the number of test cases

in a test cycle, number of failures, and so on.

However, testing must have a well planned structure

in order to guarantee a good coverage, as the lack of

preparation, structure and steering can lead to time

waste and retesting of the same functionalities, when

more than one tester is involved.

Such coverage – and thus the final quality of the

software – is best achieved when test activities are

structured and follow accepted standards and good

practices. These standards include BS-7925-1/2, IEEE-

829 and IEEE-1008, which are being consolidated in

the standard for software testing ISO/IEC 29119.

Many companies cannot fully afford to test, for lack

of time and resources, and test automation has increa-

singly been used as a way to cope with this problem,

since its initial cost pays off after a short time.

For this reason, Sofist, an outsourcing company

specialized in software testing, is developing a tool

named Crux for the automated generation of executable

test cases. The tool considers the specification of the

application and generates the corresponding test cases.

As a result, test coverage is drastically increased and

more faults can be identified before deployment, thus

increasing the target software dependability.

The purpose of the tool is to ease testing activities. Be-

sides producing automated test cases, it is also planned to

follow the techniques and documentation recommenda-

tions proposed by ISO/IEC 29119.

The following sections show how we are developing

the tool following these standards and how the quality

of the test cases produced relates to the standards, even

if presently only the grounding standards and early

drafts are available.

3.2. Crux basic outline

Test automation is a complex and time consuming

activity, as compared to the manual execution of tests,

but after the scripts are created an automated test case

can be executed repeatedly and in a faster way. This al-

lows tests to be rapidly run after software changes, at

the same time reducing the chances of human errors,

common when tests are manually executed.

Since the creation of automated test cases is the

most time consuming part in test automation, Sofist is

developing Crux, a complete and versatile design tool

for automated test cases for applications.

In the Crux environment, the system being tested is

specified by defining its input interfaces and business

rules. This allows the creation of sets of data, input ac-

tions and validation actions, which are combined in a test

case and generate an automated test script. At this point

scripts can already be run without intervention of the test

analyst, as the tool also provides for the test data.

3.3. Pre-adherence to the standard

Since the new standard is yet to be published, in the

design of the automated test tool we can only consider:

a) the present standards upon which the new standard

will be based and b) the drafts available.

Here we should mention a delicate issue.

Although the final committee drafts (FCD) for parts 2

and 3, and the committee drafts (CD) for parts 1 and 4 are

available upon affiliation in the country’s national standar-

dization body, they are subject to nondisclosure clauses

that hinder their presentation in this work. However, we

did access them, and anyone can do the same, subject to

affiliation in the country’s national standardization body

and to agreement with nondisclosure clauses.

Specifically in the case of Crux, a tool primarily

aimed at software testers, many items of the new stan-

dard are still to be evaluated for actual use inside the

tool. Presently we are focused only on parts 3 and 4 of

the new standard, i.e., Test Documentation and Test

Techniques. Furthermore, we are initially limiting ad-

herence to test case specification in dynamic testing

processes, and to testing techniques.

The final committee draft for test documentation in

dynamic test processes is quite mature and resembles

many parts of its base standard ISO/IEC 829.

Table 1 below shows what items of the standard (test

documentation) are presently covered by Crux (marked

with yes) and what items are now our to-do items that

gradually will be included in the tool (marked with no).

Table 1. Test Documentation

Item
Covered

by Crux?

Test case specification identifier Yes

Test items Yes

Input specifications Yes

Output specifications Yes

Environmental needs No

Special procedural requirements No

Intercase dependencies Yes

As for testing techniques, exactly the same idea ap-

plies, but here we are initially relying only on BS 7925-

2, as the final committee draft is not available yet. Ta-

ble 2 shows present adherence (marked with yes) and

to-do items that gradually will be included in the tool

(marked with no).

Table 2. Testing Techniques

Technique
Covered

by Crux

Equivalence Partitioning Yes

Boundary Value Analysis Yes

State Transition Testing No

Cause-Effect Graphing No

Syntax Testing No

Statement Testing No

Branch/Decision Testing No

Data Flow Testing No

Branch Condition Testing No

Branch Condition Combination Testing No

Modified Condition Decision Testing No

LCSAJ Testing No

Random Testing No

Other Testing Techniques

(Combinatorial Testing)
Yes

4. Conclusions

There are already some clear impacts that the new

standard will have on the industry. The draft presently

available for Part 2, Test Process, addresses the issue

of conformance to the standard in a more profound

way, deepening the effort toward auditability that be-

gan with BS 7925-2, but enlarging its scope to other

test processes and for use during the complete software

lifecycle. It explicitly describes the requirements for

full conformance and for tailored conformance, which

will allow external organizations to certify the confor-

mance to the standard of a given organization’s

processes.

This is new in software testing and it meets the de-

mand of organizations acquiring vital third party’s

software and of regulatory agencies. In a chain reac-

tion, it will make software testing a more systematic

and day to day part of software producers’ life – and as

part of this chain it will also affect outsourcing soft-

ware testing companies like Sofist.

As a practical result, we decided to adopt a proac-

tive attitude and adhere in advance to the standard.

Tables 1 and 2 in the previous section illustrate our

approach for an advance adherence to the new stan-

dard, as a strategic decision. Many items are marked as

no at this moment, meaning that now they are included

in our plans for product development, and others

marked as yes, meaning we already adhere to them.

However, the key point here is that now a steering

standard in software testing is coming and it should be

used for strategic planning.

As from the moment that WG26 announced the re-

lease of the working drafts of the new standard in July,

2010 [6], as well as the standards upon which it will be

based and which it will officially replace, some points

became clear.

First, ISO/IEC 29119 will probably be the most im-

portant standard for software testing, and for quite

some time. The standard will be here to stay.

Second, 80% of the work of WG26 is complete, as

the timeline of the standard elaboration is five years

and it will be published in a little more than one year.

It is time to plan and prepare for it.

Finally, the following are some guidelines that we

adopted and that might be useful for anyone involved

in software testing.

 Obtain, study and focus on the base standards BS

7925-1/2, IEEE 829 and IEEE 1008;

 Get involved with the standard [7] and obtain the

drafts already available. Beside allowing feedback

for practitioners, the affiliation also allows access to

the drafts;

 Start adhering now. Note which items are already

complied with, and set a plan to adhere to the re-

maining items, as your company’s strategic plan.

We have a little more than one year left.

5. References

[1] BS 7925-2:1998. Software testing. Software component

testing. BSI Group. London, 1998.

[2] BS-7925-1:1998. Software testing. Vocabulary. BSI

Group. London, 1998.

[3] Hetzel, W.C. Ed. Program Test Methods. Prentice-Hall,

Englewood Cliffs, N.J., 1973.

[4] IEEE 829-2008. IEEE Standard for Software and System

Test Documentation. Institute of Electrical and Electronics

Engineers. New York, (1983, 1998, 2008).

[5] IEEE 1008-1987. IEEE Standard for Software Unit

Testing. Institute of Electrical and Electronics Engineers.

New York, 1986.

[6] “ISO/IEC 29119 Software Testing.” Internet:

http://softwaretestingstandard.org/ accessed February 2,

2011. Working Group 26 (WG26) of the ISO/IEC JTC1/SC7

Software and Systems Engineering committee.

[7] “ISO/IEC 29119 Software Testing – How to get

Involved”. Internet: http://softwaretestingstandard.org/

gettinginvolved.php updated August 03 2010, accessed

February 2, 2011.

[8] Murnane, T. “ISO Standards on Testing”. Test

Automation Workshop 2007. Gold Coast, Australia, 2007.

Internet: http://shakti.it.bond.edu.au/~sand/TAW07/ISO-

SC7_TestStd29119.ppt accessed February 2, 2011.

[9] Presentation on ISO/IEC 29119 Software Testing. Internet:

http://softwaretestingstandard.org/Downloads/ISO-

IEC_29119_Software_Testing_July_2010.ppt accessed

February 2, 2011.

