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Abstract—This paper describes the application of the CoFI 
testing methodology to the software of a multi-functional robot 
end-effector. FARE is a prototype end-effector for drilling, 
sealing and inserting fasteners in aircraft fuselage barrels, as 
part of the fuselage assembly process. This work is the result of 
a partnership between Brazilian aircraft industry and the 
Aeronautics Institute of Technology (ITA).  
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I.  INTRODUCTION 

This paper describes the application of CoFI 
(Conformance and Fault Injection) testing methodology to 
the embedded software of a multi-functional robot end-
effector, called FARE (Fuselage Assembly Robotic End-
effector).  

This work is part of the ASAA project (Aircraft Structure 
Assembly Automation), which is the result of a partnership 
between the Brazilian aircraft industry and the Aeronautics 
Institute of Technology (ITA). The purpose of the ASAA 
project is the automation of the fuselage assembly process. 
The automation is a key-factor for maintaining 
competitiveness of Brazilian aircraft industry. It is essential 
for improving product quality, reducing costs and production 
times. 

 
The CoFI methodology was proposed and has been 

traditionally used to validating space embedded systems. In 
this paper, we illustrate its application to an example from 
the aircraft manufacturing industry. FARE is a prototype 
end-effector for drilling, sealing and inserting fasteners in 
aircraft fuselage barrels.  

Traditionally, the use of robots in aircraft structural 
assembly has been a challenge. The riveting operation is 
performed either manually or in dedicated machines. 
Dedicated riveting machines are used to assembly small 
parts, while the assembly of large fuselage sections is usually 
done manually [4]. 

The use of robots in the aircraft assembly process has to 
overcome one major problem: the lack of accuracy of 
industrial robots. For this reason, the robot end-effector must 
have an auxiliary system, such as a vision camera, and 
interferes in the robots’ trajectory in real-time [4].  

As a result, the robot end-effector must provide a number 
of functionalities. The end-effector software must coordinate 
all the end-effector components, as well as the integration 

with other equipment of the manufacturing cell. In the case 
of FARE, the software must also provide the necessary 
flexibility to test different parameters and configurations. 
This flexibility is required by the innovative nature of the 
project.  

In this context, this paper details the benefits and 
limitations of the application of the CoFI methodology to the 
validation of the FARE control software.  

 
The approach adopted for the CoFI application is 

illustrated in Figure 1.  
 

 
 

Figure 1.  Approach adopted for the CoFI application. 

 
Firstly, the FARE requirements are used for generating a 

partial version of the software, this partial version 
implements some of the functionalities required for the 
FARE end-effector. The partial version of FARE software is 
verified via simulation and basic functional testing.  
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In parallel, the requirements of FARE software are used 
to generate the CoFI test cases, which are applied to the 
partial version of the FARE software. The errors detected are 
used to elaborate a set of lessons learned, which are taken 
into account for the full version of the FARE software. 

The approach illustrated in Figure 1 is adopted due to the 
limited time and human resources available for the 
application of CoFI methodology. The reuse of the lessons 
learned with the partial version of the software is possible 
due to the similarity among some modules of the FARE end-
effector. 

In order to evaluate the interference of the human factor 
in the CoFI results, a second person also elaborated the 
models of the CoFI methodology for one of the modules of 
the FARE end-effector. The first set of CoFI models was 
created by the engineer responsible for designing and 
programming the FARE software, while this second one was 
created by an independent person. 

 
This paper is organized as following. Section 2 

introduces the CoFI methodology. Section 3 presents the 
FARE end-effector. Section 4 illustrates the application of 
CoFI to the partial version of FARE end-effector, discusses 
the main errors and summarizes the lessons learned. Section 
5 draws some conclusions. 

 

II. THE COFI METHODOLOGY 

 
The CoFI methodology [1] consists of a systematic way 

to create test cases for software or system. The CoFI is 
comprised of steps to identify a set of services. Each service 
is modeled as finite state machines (Mealy machines) from a 
black box point of view. The models represent the behavior 
of the system under the following classes of inputs: (i) 
normal, (ii) specified exceptions, (iii) inopportune inputs and 
(iv) invalid inputs caused by hardware faults.  

The software behavior is represented by small models 
taking into account the decomposition in terms of: (i) the 
services provided by software and (ii) the types of behavior 
under the classes of inputs. The types of behavior defined in 
the context of the CoFI are: Normal, Specified Exception, 
Sneak Path, and Fault Tolerance. These behaviors are 
respectively associated to the following inputs: normal, 
specified exceptions, inopportune and invalid inputs. In this 
work, the fault tolerance behavior (related to invalid input) is 
not used. More than one model can be created in order to 
represent a type of behavior for a given service.  

In this work, the application of CoFI makes use of the 
Condado tool [2] for the automatic generation of test cases. 
The Condado tool receives as input the state machine models 
and provides as output the test sequences.  

The CoFI methodology has been traditionally applied to 
space embedded systems. One example is illustrated by 
Pontes et al. [3]. In this work, the CoFI is applied to the on-
board data handling (OBDH) computer of a satellite. This 
work discusses issues related to the viability of applying the 
CoFI methodology, such as time for the system modeling, 
time for applying the test cases, number and severity of the 

errors detected by CoFI. For the OBDH software, the process 
of modeling, generating and applying the test suite spent 
forty hours. The main contributions of the CoFI 
methodology were the identification of critical error in the 
OBDH software and the improvement of the testing tool. 
The main limitations regard the combination of services, and 
the impossibility to assure code coverage. 

 

III.  THE FARE END-EFFECTOR 

 
The FARE end-effector (Figure 2) was designed to 

automate the process of drilling, sealing and inserting 
fasteners in aircraft fuselage. The FARE end-effector 
contains a number of devices that operates in a coordinated 
way in order to perform a sequence of tasks.  

 

 
Figure 2.  The FARE end-effector. 

 
The devices of the FARE end-effector are organized in 

functional modules, which are illustrated in different colors 
in Figure 3. This organization is also reflected in the FARE 
control software. 

 
The FARE modules are: 

• Vision module: it uses a CCD camera to determine the 
error in the robot position related to a reference in the 
aircraft fuselage. 

• Perpendicularity module: it determines the error in the 
robot orientation related to the fuselage surface.  

• Positioning module: it corrects the robot position and 
orientation according to the errors calculated by the 
vision and perpendicularity modules. 

• Clamp module: it pressures the FARE end-effector 
against the fuselage in order to avoid the formation of 
chips during the drilling operation. 

• Drilling module: it performs the drill in the fuselage 
surface. 

• Fastening module: it applies seal in the fasteners and 
inserts them in the drills. 



• Mechanical platform: it integrates the FARE module 
and put them in necessary position to be used. 

 

 
Figure 3.  The FARE modules. 

 
The hardware architecture of the FARE control system is 

composed of an industrial computer equipped with a set of 
interface boards and a motion control board. The 
communication with the industrial robot that holds the FARE 
end-effector is made via OPC protocol.  

 
The software requirements are related to three modes of 

operations: manual, semi-automatic and automatic. All the 
three modes of operation must assure the safeness and 
integrity of both the FARE and the fuselage. 

The manual mode of operation gives the control of the 
FARE devices to the user. It allows the user to activate each 
device individually. Examples of commands of the manual 
mode of operation are: turn on the spindle, capture an image 
with the CCD camera. 

The semi-automatic mode provides to the user 
commands for performing the main functionality related to 
each module. Examples of commands of the semi automatic 
mode of operation are: make a drill, calculate the position 
error.  

The automatic mode receives as input an assembly plan 
with the position of a set of references, drills and fasteners, 
as well as the corresponding parameters. The control 
software must then coordinate the operation of all modules in 
order to complete the assembly plan.  

The FARE software is programmed in LabView. It uses a 
producer-consumer architecture that handles all the events 
generated by the user interface, the FARE sensors and the 
industrial robot. It coordinates the execution of the requested 
task with the appropriated priority. 

 

IV. THE APPLICATION OF COFI 

A. CoFI Modeling 

In order to make possible the application of the CoFI 
methodology, some of the FARE modules were selected for 
composing the partial version of the FARE software, 
following the approach illustrated in Figure 1.  

The purpose of this approach is to apply the CoFI to 
these modules, compile a set of lessons learned and then 
apply the lessons learned to the others modules, trying to 
find similar errors. Although this approach reduces the 
reliability provided by CoFI, it is necessary due to the 
limited time and human resources available for the project. 

The modules selected for the partial version are: drilling 
module, fastening module and mechanical platform. Each 
module is considered as a service. For the application of the 
CoFI methodology, only the semi-automatic and the 
automatic modes of operation are considered. The reason for 
not considering the manual mode is because it is basically 
composed by single events.  

For each service, the state of the FARE devices are 
considered unknown when the command of the semi-
automatic mode is requested. This indeterminism is 
necessary because the user can execute any manual 
command before entering in the semi-automatic or automatic 
mode.  

Another important point is the definition of input events. 
In the case of the FARE software, the events can be either 
generated by the user or by the FARE devices. The inputs 
related to all the devices are read with a constant frequency. 
An event of the CoFI model may be characterized by a 
Boolean expression combining input values and events 
generated by the user interface.  

As an example, this paper presents the models elaborated 
for the drilling module. Due to the limited space, it is not 
possible to distinguish each input and output event 
individually. 

The normal behavior model (Figure 4) is composed of 25 
states and 28 transitions. It is basically a sequence of 
commands. The specified exception model (Figure 5) is also 
composed of 25 states and 52 transitions. The exceptions 
considered in this model correspond to the interruption of the 
semi-automatic sequence, requested by the user via an 
emergency button.  

The sneak path model is composed of 27 states and more 
than 100 transitions. Basically, when an input that is not 
expected occurs, the software has one of the following 
behaviors: 
A) It ignores the input. 
B) It detects a sensor fault and goes to a deadlock state 

from where the software cannot exit.  
C) It detects a fault in the motion control board and goes to 

a fault state that requires the user to reset the motion 
control board. 

 



 

Figure 4.  Normal behavior – Drilling module. 

 

 
Figure 5.  Specified exception behavior – Drilling module. 

 
The CoFI modeling of the semi-automatic mode of the 

fastening module is divided in two services: (1) the sending 
of the fastener from a remote buffer to the FARE end-
effector, and (2) the installation of the fastener. Each service 
has one state machine model for the normal behavior, one for 
the specified exception and one for the sneak paths. 

The drilling module generated 119 test cases: 3 for the 
normal behavior, 26 for the specified exceptions and 90 for 



sneak path. The fastening module generated 157 test cases: 7 
related to the normal behavior, 33 for the specified 
exceptions and 117 for the sneak path. The mechanical 
platform is included in the test cases of the drilling and 
fastening modules, as it must position these modules for the 
correct execution of the drilling and fastening operations. 

The CoFI modeling of the automatic mode of operation 
included only the events related to the mechanical platform, 
drilling, fastening modules. It is a composition of the 
sequence of each module. Each sequence of the semi-
automatic mode is condensed in a single state. As a 
consequence, the automatic mode resulted in 2 test case for 
the normal behavior, 6 for the specified exception and 10 for 
the sneak path. 

 

B. Lessons Learned from CoFI 

 
The application of the test cases generated by the CoFI 

methodology resulted in the detection of a number of errors 
and in important contributions for the FARE control 
software.  

Regarding the severity of failures detected by the CoFI 
methodology, some of the failures in the test cases were of 
low severity and were associated with an inappropriate 
behavior of the FARE devices. Other failures were of high 
severity and resulted in danger situations that may 
compromise the safeness and integrity of the manufacturing 
system.  

Generally, the failures have two sources: (1) 
programming errors and (2) poor requirements regarding the 
behavior of the FARE control software in the case of failure 
of the FARE devices.  

Most of the failures were associated with the test cases 
generated by the sneak path model.  

One important observation is that a significant number of 
failures were resulted from systematic implementation errors 
that were repeated for all the semi-automatic sequences. This 
fact made possible to reuse the CoFI results to detect errors 
also in the implementation of the other modules that 
composed the full version of FARE control software. 

The most important errors appointed by CoFI were:  
• Error related to the control of the mechanical platform. 

Once the moving of the mechanical platform is started, 
it could not be halted by the emergency button. This 
error is due to the control loop of the servo positioning 
system. In order to stop the mechanical platform, FARE 
software must interfere in the motion control board. This 
was an error that were repeated in all the semi-automatic 
sequences.  

• Error related to the interruption of a service. The tests 
appointed that when the emergency button is pressed, 
some devices requested the execution of a finalization 
routine in order to stop working in a safe configuration. 
Before the application of the CoFI methodology, the 
software simply interrupts the command to these 
devices, resulting in unsafe states. One example is 
fastener installation device, which must be retracted 
when the emergency button is pressed.  

• The routine that implements the automatic mode of 
operation has a hidden fault. This routine has two path 
for positioning the mechanical platform: the first one 
when the mechanical platform is in the vision or drilling 
module, and the second one when it is in the fastener 
module. All the functional tests performed before the 
application of CoFI considered only the first path 
because of the initialization routine.  

• Error in the implementation of the of the spindle 
movement. The signal from the spindle rotation sensor 
was not considered in the activation logic. This error 
allowed the spindle to be pressured against the fuselage 
without being turned on, resulting in damage to both the 
FARE and the fuselage.  

• Problem in the detection of the fastener. Due to the 
mechanical design of the FARE, when the fastener is 
sent from the remote buffer, its detection is only 
possible in the receptor device. The analysis of the 
inopportune events leaded to the modification of the 
semi-automatic sequence in order to assure that the 
installation device has gripped the fastener.  

• Errors caused by manual commands from the user 
interface when the semi-automatic sequence is under 
execution. The test cases generated by the sneak path 
models showed that some manual commands were still 
available and could cause damage to the FARE devices. 
In order to correct this problem, the entire graphical 
interface should be blocked during the execution of a 
semi-automatic or automatic sequence. 

• Problems caused by faults in the FARE devices. The 
malfunctioning of the FFARE devices generated 
inopportune inputs, which were not adequately treated 
by the FARE software and could result in erroneous 
output to the FARE devices.  

 

C. Influence of the Human Factor 

 
The CoFI methodology was applied to the FARE end-

effector by the engineer that designed and programmed the 
FARE software. In order to verify the influence of the human 
factor in the results of the CoFI methodology, a second set of 
CoFI models was created by an independent person for the 
drilling module.  

The following results were obtained in this experiment. 
The models related to the normal behavior were similar. The 
model created by the designer had three additional states not 
considered by the independent person.  

The two versions of the specified exception model 
considered different exceptions. While the designer modeled 
the effect of the emergency button, the independent person 
considered the overheating of the spindle, which was not in 
the designer models. 

 
 
 
 



V. CONCLUSIONS 

 
This paper discusses the application of the CoFI testing 

methodology to a multifunctional end-effector used in the 
assembly of aircraft fuselage sections.  

The CoFI testing methodology has been originally 
proposed to space systems, which can be defined as critical 
applications. This paper discusses its applicability to 
industrial automation products. Differently from space 
systems, industrial automation products are usually 
submitted to functional tests defined according to the 
expertise of the developer. The contribution of this paper is 
on the analysis of the applicability of a model based testing 
methodology.  

In this paper, a number of simplifications are introduced 
in order to adequate it to an application of lower criticality. 
The most important simplification is the selection of some of 
the end-effector modules (drilling, fastening and mechanical 
platform). The results of the application of CoFI to these 
modules were compiled in lessons learned and were used to 
revise and correct the software of these modules. 
Furthermore, the lessons learned were also applied to the 
other modules of FARE, allowing the detection of many 
problems and errors without the need of extensive modeling. 
This point suggests that a developer/programmer tends to 
commit similar errors. A possible application of the CoFI 
methodology is on the training of developers/programmers.  

Another important simplification introduced in the CoFI 
methodology is the exclusion of the manual mode of 
operation from the list of services. Because of this 
simplification, the state of the FARE devices are considered 
unknown when a semi-automatic or automatic sequence of 
operations is performed.  

The influence of the human factor was analyzed by 
elaborating two versions of the CoFI models for one of the 
FARE module. The first version was elaborated by the 
designer of the software, while the second one was 
elaborated by an independent person. The comparison 
showed that both models were incomplete and considered 
different specified exceptions and inopportune events. Even 
thought, both versions were able to detect the errors 
described in this paper. 

As a general conclusion, this work shows that the CoFI 
can contribute to industrial automation products. However, 
differently from the space area, the methodology can be 
simplified (or “relaxed”). One of its most important 
contributions is on training the developers to think about 
exceptions and inopportune events.  
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