Applying the CoFI Testing Methodology to a Multifunctional Robot End-Effector

Jose Marcos Silva Anjos, Juliano Gripp, RodrigotiFentes, Emilia Villani

Instituto Tecnoldgico de Aerondutica (ITA)
Sao José dos Campos, Brazil
jmarcos.anjos@gmail.carjuliano.gripp@gmail.conrpastl@gmail.comevillani@ita.br

Abstract—This paper describes the application of the CoFl
testing methodology to the software of a multi-funttonal robot
end-effector. FARE is a prototype end-effector fordrilling,
sealing and inserting fasteners in aircraft fuselag barrels, as
part of the fuselage assembly process. This worktise result of
a partnership between Brazilian aircraft industry and the
Aeronautics Institute of Technology (ITA).

Keywords. model based testing;
robotic end-effector.

industrial automation;

with other equipment of the manufacturing cell the case
of FARE, the software must also provide the neggssa
flexibility to test different parameters and configtions.
This flexibility is required by the innovative natuof the
project.

In this context, this paper details the benefitd an
limitations of the application of the CoFI methoalgy to the
validation of the FARE control software.

The approach adopted for the CoFl application is
illustrated in Figure 1.

I. INTRODUCTION
This paper describes the application of CoFl Requirements of
(Conformance and Fault Injection) testing methodpl®o FARE software
the embedded software of a multi-functional robaod-e
effector, called FARE (Fuselage Assembly Robotid-En
effector). v v

This work is part of the ASAA project (Aircraft Stture
Assembly Automation), which is the result of a parship
between the Brazilian aircraft industry and the okawutics
Institute of Technology (ITA). The purpose of th&SAA
project is the automation of the fuselage assemlibgess.
The automation is a key-factor for
competitiveness of Brazilian aircraft industry.idtessential
for improving product quality, reducing costs amdduction
times.

test cases
The CoFl methodology was proposed and has been *
traditionally used to validating space embeddedesys. In :
this paper, we illustrate its application to anraegée from Elaboration of lessons
the aircraft manufacturing industry. FARE is a ptppe learned
end-effector for drilling, sealing and insertingstieners in i

aircraft fuselage barrels.
Traditionally, the use of robots in aircraft sturet
assembly has been a challenge. The riveting oparési

performed either manually or in dedicated machines. *
Dedicated riveting machines are used to assembigll sm

parts, while the assembly of large fuselage sesfi®nsually
done manually [4].

The use of robots in the aircraft assembly probessto
overcome one major problem: the lack of accuracy
industrial robots. For this reason, the robot effieleéor must
have an auxiliary system, such as a vision camand,
interferes in the robots’ trajectory in real-tind@.[

As a result, the robot end-effector must provideimber
of functionalities. The end-effector software mogbrdinate
all the end-effector components, as well as thegnation

maintaining

Definition of CoFl
test cases

Partial elaboration of
FARE software

v

Verification of partial
FARE software

v

Application of CoFlI

Full elaboration of
FARE software

Functional testing of
full FARE software

of Figure 1. Approach adopted for the CoFI application.

Firstly, the FARE requirements are used for geimagat
partial version of the software, this partial versi
implements some of the functionalities required fhe
FARE end-effector. The partial version of FARE eglte is
verified via simulation and basic functional tegtin

In parallel, the requirements of FARE software ased errors detected by CoFl. For the OBDH software pilteess
to generate the CoFl test cases, which are apphietie of modeling, generating and applying the test sajtent
partial version of the FARE software. The errortedied are forty hours. The main contributions of the CoFl
used to elaborate a set of lessons learned, whichaien methodology were the identification of critical @rrin the
into account for the full version of the FARE sddine. OBDH software and the improvement of the testingl.to

The approach illustrated in Figure 1 is adoptedtdude The main limitations regard the combination of g=rs, and
limited time and human resources available for thehe impossibility to assure code coverage.
application of CoFl methodology. The reuse of tegsbns
learned with the partial version of the softwarep@ssible
due to the similarity among some modules of the EARd- .
effector.

In order to evaluate the interference of the hufiaator
in the CoFl results, a second person also elalbrtte

THE FAREEND-EFFECTOR

The FARE end-effector (Figure 2) was designed to
automate the process of drilling, sealing and tirsgr
models of the CoFl methodology for one of the medwf fasteners in aircraft fuselage. The FARE end-effect
the FARE end-effector. The first set of CoFI modeias contains a number of devices that operates in ediraied
created by the engineer responsible for designind a way in order to perform a sequence of tasks.
programming the FARE software, while this second was
created by an independent person.

This paper is organized as following. Section 2
introduces the CoFl methodology. Section 3 presémts
FARE end-effector. Section 4 illustrates the amlan of
CoFl to the partial version of FARE end-effectosadisses
the main errors and summarizes the lessons leaBsation
5 draws some conclusions.

. THE COFl METHODOLOGY

The CoFl methodology [1] consists of a systematiy w
to create test cases for software or system. Thiel @o
comprised of steps to identify a set of services:hEservice
is modeled as finite state machines (Mealy machiftem a
black box point of view. The models represent tbbadvior
of the system under the following classes of inputs
normal, (ii) specified exceptions, (iii) inopporeimputs and
(iv) invalid inputs caused by hardware faults. . .

The software behavior is represented by small nsodel, 1he devices of the FARE end-effector are organized
taking into account the decomposition in terms (§f:the functional modules, which are illustrated in digiat colors
services provided by software and (ii) the typebetiavior " Figure 3. This organization is also reflectedhie FARE
under the classes of inputs. The types of behajgéined in ~ COntrol software.
the context of the CoFl are: Normal, Specified Epticm,
Sneak Path, and Fault Tolerance. These behavi@s ar '"€ FARE modules are: ,
respectively associated to the following inputsrmal, * Vision module: it uses a CCD camera to determiee th

Figure 2. The FARE end-effector.

specified exceptions, inopportune and invalid ispun this
work, the fault tolerance behavior (related to lidzaput) is
not used. More than one model can be created ier acd
represent a type of behavior for a given service.

In this work, the application of CoFl makes usettud
Condado tool [2] for the automatic generation ot Eases.
The Condado tool receives as input the state machodels
and provides as output the test sequences.

The CoFl methodology has been traditionally apptied

space embedded systems. One example is illustizyed

Pontes et al. [3]. In this work, the CoFl is apglie the on-
board data handling (OBDH) computer of a satellftbis
work discusses issues related to the viabilitypgdlying the
CoFl methodology, such as time for the system niogel
time for applying the test cases, number and dgvefithe

error in the robot position related to a refereimcéne
aircraft fuselage.

Perpendicularity module: it determines the errahim
robot orientation related to the fuselage surface.
Positioning module: it corrects the robot positéom
orientation according to the errors calculatedhgy t
vision and perpendicularity modules.

Clamp module: it pressures the FARE end-effector
against the fuselage in order to avoid the fornmatib
chips during the drilling operation.

Drilling module: it performs the drill in the fussde
surface.

Fastening module: it applies seal in the fasteards
inserts them in the drills.

e Mechanical platform: it integrates the FARE module IV. THEAPPLICATION OFCOFI
and put them in necessary position to be used.

A. CoFl Modeling

In order to make possible the application of the~ICo
methodology, some of the FARE modules were selefcted
composing the partial version of the FARE software,
following the approach illustrated in Figure 1.

The purpose of this approach is to apply the CoFl t
these modules, compile a set of lessons learnedthrerd
apply the lessons learned to the others modulgmgtrto
find similar errors. Although this approach redudbe
reliability provided by CoFl, it is necessary due the
limited time and human resources available forpttogect.

The modules selected for the partial version ariéing
module, fastening module and mechanical platformchE
module is considered as a service. For the apjaicaf the
CoFl methodology, only the semi-automatic and the
automatic modes of operation are considered. Tésorefor
not considering the manual mode is because it sicéaldy
composed by single events.

For each service, the state of the FARE devices are
considered unknown when the command of the semi-

Figure 3. The FARE modules. automatic mode is requested. This indeterminism is
necessary because the user can execute any manual
)) command before entering in the semi-automatic tymatic

The hardware architecture of the FARE control syst® mode.
composed of an industrial computer equipped witletaof Another important point is the definition of inpexents.
interface boards and a motion control board. Theap the case of the FARE software, the events casither
communication with the industrial robot that holde FARE generated by the user or by the FARE devices. m'hats
end-effector is made via OPC protocol. related to all the devices are read with a condtaquency.

) An event of the CoFl model may be characterizedaby

The software requirements are related to three mofle Bpplean expression combining input values and event
operations: manual, semi-automatic and automaticth& generated by the user interface.
three modes of operation must assure the saferma$s a As an example, this paper presents the models raltaiob
integrity of both the FARE and the fuselage. for the drilling module. Due to the limited spadejs not

The manual mode of operation gives the controlhef t possible to distinguish each input and output event
FARE devices to the user. It allows the user tovatet each jndividually.

device individually. Examples of commands of thenmed The normal behavior model (Figure 4) is compose25of
mode of operation are: turn on the spindle, capdrénage states and 28 transitions. It is basically a secgieof
with the CCD camera. commands. The specified exception model (Figurie 5)so

The semi-automatic mode provides to the usegomposed of 25 states and 52 transitions. The &mosp

commands for performing the main functionality tetato considered in this model correspond to the intéivapof the
each module. Examples of commands of the semi @itom semi-automatic sequence, requested by the userawia

mode of operation are: make a drill, calculate sition emergency button.

error.))] The sneak path model is composed of 27 states anel m
The automatic mode receives as input an assematy plthan 100 transitions. Basically, when an input tisanot

with the position of a set of references, drillsidasteners, expected occurs, the software has one of the follpw
as well as the corresponding parameters. The dontr@ehaviors:

software must then coordinate the operation ahaltiules in A) Itignores the input.

order to complete the assembly plan. - ' B) It detects a sensor fault and goes to a deadlatke st
The FARE software is programmed in LabView. It uges from where the software cannot exit

producer-consumer architecture that handles alletrents . : :

generated by the user interface, the FARE sensuisthe C) It detects a fault in the .motlon control board gmtg to

industrial robot. It coordinates the executiontu tequested a fault state that requires the user to reset tbgom

task with the appropriated priority. control board.

Figure 4. Normal behavior — Drilling module.

Figure 5. Specified exception behavior — Drilling module.

The CoFl modeling of the semi-automatic mode of the
fastening module is divided in two services: (1§ #ending
of the fastener from a remote buffer to the FARH-en
effector, and (2) the installation of the fastertgach service
has one state machine model for the normal behaner for
the specified exception and one for the sneak paths

The drilling module generated 119 test cases: 3Her
normal behavior, 26 for the specified exceptiond 8a for

sheak path. The fastening module generated 15¢asss: 7
related to the normal behavior, 33 for the spetifie

exceptions and 117 for the sneak path. The medianic

platform is included in the test cases of the iddlland
fastening modules, as it must position these madigiethe
correct execution of the drilling and fastening rapiens.

The CoFl modeling of the automatic mode of operatio
included only the events related to the mechamtzform,
drilling, fastening modules. It is a composition tie

sequence of each module. Each sequence of the semi-

automatic mode is condensed in a single state. As
consequence, the automatic mode resulted in Zasst for
the normal behavior, 6 for the specified exceptdad 10 for
the sneak path.

B. Lessons Learned from CoFl

The application of the test cases generated byCtifd
methodology resulted in the detection of a humbiesrmrs

and in important contributions for the FARE control

software.

Regarding the severity of failures detected by @I
methodology, some of the failures in the test casa® of
low severity and were associated with an inappaberi
behavior of the FARE devices. Other failures wefrdnigh
severity and resulted in danger
compromise the safeness and integrity of the matwiag
system.

Generally, the failures have two sources:
programming errors and (2) poor requirements réggrihe
behavior of the FARE control software in the caéiture
of the FARE devices.

Most of the failures were associated with the testes
generated by the sneak path model.

One important observation is that a significant hanof
failures were resulted from systematic implemeatagrrors
that were repeated for all the semi-automatic secgse This
fact made possible to reuse the CoFl results tectietrors

situations that may

).

e The routine that implements the automatic mode of
operation has a hidden fault. This routine has path
for positioning the mechanical platform: the fikzte
when the mechanical platform is in the vision dHidg
module, and the second one when it is in the fasten
module. All the functional tests performed befohe t
application of CoFl considered only the first path
because of the initialization routine.
e Error in the implementation of the of the spindle
movement. The signal from the spindle rotation sens
was not considered in the activation logic. Thiser
allowed the spindle to be pressured against thaldge
without being turned on, resulting in damage tdkbe
FARE and the fuselage.
e Problem in the detection of the fastener. Due ® th
mechanical design of the FARE, when the fastener is
sent from the remote buffer, its detection is only
possible in the receptor device. The analysis & th
inopportune events leaded to the modification a th
semi-automatic sequence in order to assure that the
installation device has gripped the fastener.
Errors caused by manual commands from the user
interface when the semi-automatic sequence is under
execution. The test cases generated by the snehk pa
models showed that some manual commands were still
available and could cause damage to the FARE device
In order to correct this problem, the entire graphi
interface should be blocked during the executiora of
semi-automatic or automatic sequence.
Problems caused by faults in the FARE devices. The
malfunctioning of the FFARE devices generated
inopportune inputs, which were not adequately éebat
by the FARE software and could result in erroneous
output to the FARE devices.

a

C. Influence of the Human Factor

The CoFl methodology was applied to the FARE end-

composed the full version of FARE control software.
The most important errors appointed by CoFIl were:

e Error related to the control of the mechanical fptat.
Once the moving of the mechanical platform is sthrt

it could not be halted by the emergency button.sThi

error is due to the control loop of the servo posihg
system. In order to stop the mechanical platforARE
software must interfere in the motion control bodardis
was an error that were repeated in all the senairaaitic
sequences.

» Error related to the interruption of a service. Thsts

FARE software. In order to verify the influencetbé human
factor in the results of the CoFl methodology, eosel set of
CoFl models was created by an independent persotihdo
drilling module.

The following results were obtained in this expenirn
The models related to the normal behavior werelaimihe
model created by the designer had three addit&tasts not
considered by the independent person.

The two versions of the specified exception model
considered different exceptions. While the designedeled
the effect of the emergency button, the indepengergon

appointed that when the emergency button is pressegonsidered the overheating of the spindle, whick nat in

some devices requested the execution of a finalizat
routine in order to stop working in a safe confagion.

the designer models.

Before the application of the CoFl methodology, the
software simply interrupts the command to these
devices, resulting in unsafe states. One example is
fastener installation device, which must be re&dct
when the emergency button is pressed.

The influence of the human factor was analyzed by
elaborating two versions of the CoFl models for ofi¢he
FARE module. The first version was elaborated bg th
designer of the software, while the second one was
assembly of aircraft fuselage sections. elaborated by an mdependent_ person. The comparison

The CoFl testing methodology has been originallyshowed that .b.Oth mode[s were |n'complete and coreside
proposed to space systems, which can be definedtisi different specified exceptions and inopportune &eBven
applications. This paper discusses its applicgbilio thought, both versions were able to detect the rerro

industrial automation products. Differently from asp described in this paper.

systems, industrial automation products are usuaII)é As atg'gnterell cpr(ljcluts[o?, tht|s w?.rk shov(\;s t{]avtvébﬂc
submitted to functional tests defined according the an contribute to industrial automation productswever,

expertise of the developer. The contribution o$ thaper is d_ifferlt_efntgl from “thle s%%ce Srea, t?e_tmethodtolqu brl?é
on the analysis of the applicability of a modeldshsesting simplified (or ‘relaxed”). One of its most importan

V. CONCLUSIONS

This paper discusses the application of the Costing
methodology to a multifunctional end-effector usadthe

methodology. contributions is on training the developers to khibout

In this paper, a number of simplifications areddtrced
in order to adequate it to an application of lowsticality.
The most important simplification is the selectafrsome of
the end-effector modules (drilling, fastening anechmnical
platform). The results of the application of Colel these
modules were compiled in lessons learned and wserd to (1]
revise and correct the software of these modules.
Furthermore, the lessons learned were also applietthe
other modules of FARE, allowing the detection ofnya
problems and errors without the need of extensigdeting. [2]
This point suggests that a developer/programmenistea
commit similar errors. A possible application oktiCoFI
methodology is on the training of developers/progreers.

Another important simplification introduced in tiGoFI 31
methodology is the exclusion of the manual mode of
operation from the list of services. Because ofs thi
simplification, the state of the FARE devices avesidered
unknown when a semi-automatic or automatic sequefce
operations is performed.

exceptions and inopportune events.

REFERENCES

AMBROSIO, A. M. CoFIl — uma abordagem combinando teste de
conformidade e injecao de falhas para validacdo dgoftware em
aplicacGes espaciaisTese (Doutorado em Computacédo Aplicada) —
Instituto Nacional de Pesquisas Espaciais (INPE)}p Sosé dos
Campos. 2005.

MARTINS, E.; SABIAO, S. B.; AMBROSIO, A.M. ConData: Tool
for Automating Specification-based Test Case Geiverafor
Communication Systemsoftware Quality Journal v. 8, n. 4, p.
303-319, 1999.

PONTES, R. P. et al. Embedded Critical Software tiigsfor
Aerospace Applications based on PUS. In: XI Workstle Testes e
Tolerancia a Falhas, p. 119-131, 2010.

AGUIAR, A.J.C. Integracdo de rede de Petri e sigédagrafica para
verificagdo de células robdticas colaborativas.eT@destrado) —
Instituto Tecnoldgico de Aerondautica (ITA), Sdo&aks Campos.
2009

