
Applying the CoFI Testing Methodology to a Multifunctional Robot End-Effector

Jose Marcos Silva Anjos, Juliano Gripp, Rodrigo Pastl Pontes, Emília Villani
Instituto Tecnológico de Aeronáutica (ITA)

São José dos Campos, Brazil
jmarcos.anjos@gmail.com, juliano.gripp@gmail.com, rpastl@gmail.com, evillani@ita.br

Abstract—This paper describes the application of the CoFI
testing methodology to the software of a multi-functional robot
end-effector. FARE is a prototype end-effector for drilling,
sealing and inserting fasteners in aircraft fuselage barrels, as
part of the fuselage assembly process. This work is the result of
a partnership between Brazilian aircraft industry and the
Aeronautics Institute of Technology (ITA).

Keywords: model based testing; industrial automation;
robotic end-effector.

I. INTRODUCTION

This paper describes the application of CoFI
(Conformance and Fault Injection) testing methodology to
the embedded software of a multi-functional robot end-
effector, called FARE (Fuselage Assembly Robotic End-
effector).

This work is part of the ASAA project (Aircraft Structure
Assembly Automation), which is the result of a partnership
between the Brazilian aircraft industry and the Aeronautics
Institute of Technology (ITA). The purpose of the ASAA
project is the automation of the fuselage assembly process.
The automation is a key-factor for maintaining
competitiveness of Brazilian aircraft industry. It is essential
for improving product quality, reducing costs and production
times.

The CoFI methodology was proposed and has been

traditionally used to validating space embedded systems. In
this paper, we illustrate its application to an example from
the aircraft manufacturing industry. FARE is a prototype
end-effector for drilling, sealing and inserting fasteners in
aircraft fuselage barrels.

Traditionally, the use of robots in aircraft structural
assembly has been a challenge. The riveting operation is
performed either manually or in dedicated machines.
Dedicated riveting machines are used to assembly small
parts, while the assembly of large fuselage sections is usually
done manually [4].

The use of robots in the aircraft assembly process has to
overcome one major problem: the lack of accuracy of
industrial robots. For this reason, the robot end-effector must
have an auxiliary system, such as a vision camera, and
interferes in the robots’ trajectory in real-time [4].

As a result, the robot end-effector must provide a number
of functionalities. The end-effector software must coordinate
all the end-effector components, as well as the integration

with other equipment of the manufacturing cell. In the case
of FARE, the software must also provide the necessary
flexibility to test different parameters and configurations.
This flexibility is required by the innovative nature of the
project.

In this context, this paper details the benefits and
limitations of the application of the CoFI methodology to the
validation of the FARE control software.

The approach adopted for the CoFI application is

illustrated in Figure 1.

Figure 1. Approach adopted for the CoFI application.

Firstly, the FARE requirements are used for generating a

partial version of the software, this partial version
implements some of the functionalities required for the
FARE end-effector. The partial version of FARE software is
verified via simulation and basic functional testing.

Requirements of
FARE software

Partial elaboration of
FARE software

Verification of partial
FARE software

Definition of CoFI
test cases

Full elaboration of
FARE software

Functional testing of
full FARE software

Application of CoFI
test cases

Elaboration of lessons
learned

In parallel, the requirements of FARE software are used
to generate the CoFI test cases, which are applied to the
partial version of the FARE software. The errors detected are
used to elaborate a set of lessons learned, which are taken
into account for the full version of the FARE software.

The approach illustrated in Figure 1 is adopted due to the
limited time and human resources available for the
application of CoFI methodology. The reuse of the lessons
learned with the partial version of the software is possible
due to the similarity among some modules of the FARE end-
effector.

In order to evaluate the interference of the human factor
in the CoFI results, a second person also elaborated the
models of the CoFI methodology for one of the modules of
the FARE end-effector. The first set of CoFI models was
created by the engineer responsible for designing and
programming the FARE software, while this second one was
created by an independent person.

This paper is organized as following. Section 2

introduces the CoFI methodology. Section 3 presents the
FARE end-effector. Section 4 illustrates the application of
CoFI to the partial version of FARE end-effector, discusses
the main errors and summarizes the lessons learned. Section
5 draws some conclusions.

II. THE COFI METHODOLOGY

The CoFI methodology [1] consists of a systematic way

to create test cases for software or system. The CoFI is
comprised of steps to identify a set of services. Each service
is modeled as finite state machines (Mealy machines) from a
black box point of view. The models represent the behavior
of the system under the following classes of inputs: (i)
normal, (ii) specified exceptions, (iii) inopportune inputs and
(iv) invalid inputs caused by hardware faults.

The software behavior is represented by small models
taking into account the decomposition in terms of: (i) the
services provided by software and (ii) the types of behavior
under the classes of inputs. The types of behavior defined in
the context of the CoFI are: Normal, Specified Exception,
Sneak Path, and Fault Tolerance. These behaviors are
respectively associated to the following inputs: normal,
specified exceptions, inopportune and invalid inputs. In this
work, the fault tolerance behavior (related to invalid input) is
not used. More than one model can be created in order to
represent a type of behavior for a given service.

In this work, the application of CoFI makes use of the
Condado tool [2] for the automatic generation of test cases.
The Condado tool receives as input the state machine models
and provides as output the test sequences.

The CoFI methodology has been traditionally applied to
space embedded systems. One example is illustrated by
Pontes et al. [3]. In this work, the CoFI is applied to the on-
board data handling (OBDH) computer of a satellite. This
work discusses issues related to the viability of applying the
CoFI methodology, such as time for the system modeling,
time for applying the test cases, number and severity of the

errors detected by CoFI. For the OBDH software, the process
of modeling, generating and applying the test suite spent
forty hours. The main contributions of the CoFI
methodology were the identification of critical error in the
OBDH software and the improvement of the testing tool.
The main limitations regard the combination of services, and
the impossibility to assure code coverage.

III. THE FARE END-EFFECTOR

The FARE end-effector (Figure 2) was designed to

automate the process of drilling, sealing and inserting
fasteners in aircraft fuselage. The FARE end-effector
contains a number of devices that operates in a coordinated
way in order to perform a sequence of tasks.

Figure 2. The FARE end-effector.

The devices of the FARE end-effector are organized in

functional modules, which are illustrated in different colors
in Figure 3. This organization is also reflected in the FARE
control software.

The FARE modules are:

• Vision module: it uses a CCD camera to determine the
error in the robot position related to a reference in the
aircraft fuselage.

• Perpendicularity module: it determines the error in the
robot orientation related to the fuselage surface.

• Positioning module: it corrects the robot position and
orientation according to the errors calculated by the
vision and perpendicularity modules.

• Clamp module: it pressures the FARE end-effector
against the fuselage in order to avoid the formation of
chips during the drilling operation.

• Drilling module: it performs the drill in the fuselage
surface.

• Fastening module: it applies seal in the fasteners and
inserts them in the drills.

• Mechanical platform: it integrates the FARE module
and put them in necessary position to be used.

Figure 3. The FARE modules.

The hardware architecture of the FARE control system is

composed of an industrial computer equipped with a set of
interface boards and a motion control board. The
communication with the industrial robot that holds the FARE
end-effector is made via OPC protocol.

The software requirements are related to three modes of

operations: manual, semi-automatic and automatic. All the
three modes of operation must assure the safeness and
integrity of both the FARE and the fuselage.

The manual mode of operation gives the control of the
FARE devices to the user. It allows the user to activate each
device individually. Examples of commands of the manual
mode of operation are: turn on the spindle, capture an image
with the CCD camera.

The semi-automatic mode provides to the user
commands for performing the main functionality related to
each module. Examples of commands of the semi automatic
mode of operation are: make a drill, calculate the position
error.

The automatic mode receives as input an assembly plan
with the position of a set of references, drills and fasteners,
as well as the corresponding parameters. The control
software must then coordinate the operation of all modules in
order to complete the assembly plan.

The FARE software is programmed in LabView. It uses a
producer-consumer architecture that handles all the events
generated by the user interface, the FARE sensors and the
industrial robot. It coordinates the execution of the requested
task with the appropriated priority.

IV. THE APPLICATION OF COFI

A. CoFI Modeling

In order to make possible the application of the CoFI
methodology, some of the FARE modules were selected for
composing the partial version of the FARE software,
following the approach illustrated in Figure 1.

The purpose of this approach is to apply the CoFI to
these modules, compile a set of lessons learned and then
apply the lessons learned to the others modules, trying to
find similar errors. Although this approach reduces the
reliability provided by CoFI, it is necessary due to the
limited time and human resources available for the project.

The modules selected for the partial version are: drilling
module, fastening module and mechanical platform. Each
module is considered as a service. For the application of the
CoFI methodology, only the semi-automatic and the
automatic modes of operation are considered. The reason for
not considering the manual mode is because it is basically
composed by single events.

For each service, the state of the FARE devices are
considered unknown when the command of the semi-
automatic mode is requested. This indeterminism is
necessary because the user can execute any manual
command before entering in the semi-automatic or automatic
mode.

Another important point is the definition of input events.
In the case of the FARE software, the events can be either
generated by the user or by the FARE devices. The inputs
related to all the devices are read with a constant frequency.
An event of the CoFI model may be characterized by a
Boolean expression combining input values and events
generated by the user interface.

As an example, this paper presents the models elaborated
for the drilling module. Due to the limited space, it is not
possible to distinguish each input and output event
individually.

The normal behavior model (Figure 4) is composed of 25
states and 28 transitions. It is basically a sequence of
commands. The specified exception model (Figure 5) is also
composed of 25 states and 52 transitions. The exceptions
considered in this model correspond to the interruption of the
semi-automatic sequence, requested by the user via an
emergency button.

The sneak path model is composed of 27 states and more
than 100 transitions. Basically, when an input that is not
expected occurs, the software has one of the following
behaviors:
A) It ignores the input.
B) It detects a sensor fault and goes to a deadlock state

from where the software cannot exit.
C) It detects a fault in the motion control board and goes to

a fault state that requires the user to reset the motion
control board.

Figure 4. Normal behavior – Drilling module.

Figure 5. Specified exception behavior – Drilling module.

The CoFI modeling of the semi-automatic mode of the

fastening module is divided in two services: (1) the sending
of the fastener from a remote buffer to the FARE end-
effector, and (2) the installation of the fastener. Each service
has one state machine model for the normal behavior, one for
the specified exception and one for the sneak paths.

The drilling module generated 119 test cases: 3 for the
normal behavior, 26 for the specified exceptions and 90 for

sneak path. The fastening module generated 157 test cases: 7
related to the normal behavior, 33 for the specified
exceptions and 117 for the sneak path. The mechanical
platform is included in the test cases of the drilling and
fastening modules, as it must position these modules for the
correct execution of the drilling and fastening operations.

The CoFI modeling of the automatic mode of operation
included only the events related to the mechanical platform,
drilling, fastening modules. It is a composition of the
sequence of each module. Each sequence of the semi-
automatic mode is condensed in a single state. As a
consequence, the automatic mode resulted in 2 test case for
the normal behavior, 6 for the specified exception and 10 for
the sneak path.

B. Lessons Learned from CoFI

The application of the test cases generated by the CoFI

methodology resulted in the detection of a number of errors
and in important contributions for the FARE control
software.

Regarding the severity of failures detected by the CoFI
methodology, some of the failures in the test cases were of
low severity and were associated with an inappropriate
behavior of the FARE devices. Other failures were of high
severity and resulted in danger situations that may
compromise the safeness and integrity of the manufacturing
system.

Generally, the failures have two sources: (1)
programming errors and (2) poor requirements regarding the
behavior of the FARE control software in the case of failure
of the FARE devices.

Most of the failures were associated with the test cases
generated by the sneak path model.

One important observation is that a significant number of
failures were resulted from systematic implementation errors
that were repeated for all the semi-automatic sequences. This
fact made possible to reuse the CoFI results to detect errors
also in the implementation of the other modules that
composed the full version of FARE control software.

The most important errors appointed by CoFI were:
• Error related to the control of the mechanical platform.

Once the moving of the mechanical platform is started,
it could not be halted by the emergency button. This
error is due to the control loop of the servo positioning
system. In order to stop the mechanical platform, FARE
software must interfere in the motion control board. This
was an error that were repeated in all the semi-automatic
sequences.

• Error related to the interruption of a service. The tests
appointed that when the emergency button is pressed,
some devices requested the execution of a finalization
routine in order to stop working in a safe configuration.
Before the application of the CoFI methodology, the
software simply interrupts the command to these
devices, resulting in unsafe states. One example is
fastener installation device, which must be retracted
when the emergency button is pressed.

• The routine that implements the automatic mode of
operation has a hidden fault. This routine has two path
for positioning the mechanical platform: the first one
when the mechanical platform is in the vision or drilling
module, and the second one when it is in the fastener
module. All the functional tests performed before the
application of CoFI considered only the first path
because of the initialization routine.

• Error in the implementation of the of the spindle
movement. The signal from the spindle rotation sensor
was not considered in the activation logic. This error
allowed the spindle to be pressured against the fuselage
without being turned on, resulting in damage to both the
FARE and the fuselage.

• Problem in the detection of the fastener. Due to the
mechanical design of the FARE, when the fastener is
sent from the remote buffer, its detection is only
possible in the receptor device. The analysis of the
inopportune events leaded to the modification of the
semi-automatic sequence in order to assure that the
installation device has gripped the fastener.

• Errors caused by manual commands from the user
interface when the semi-automatic sequence is under
execution. The test cases generated by the sneak path
models showed that some manual commands were still
available and could cause damage to the FARE devices.
In order to correct this problem, the entire graphical
interface should be blocked during the execution of a
semi-automatic or automatic sequence.

• Problems caused by faults in the FARE devices. The
malfunctioning of the FFARE devices generated
inopportune inputs, which were not adequately treated
by the FARE software and could result in erroneous
output to the FARE devices.

C. Influence of the Human Factor

The CoFI methodology was applied to the FARE end-

effector by the engineer that designed and programmed the
FARE software. In order to verify the influence of the human
factor in the results of the CoFI methodology, a second set of
CoFI models was created by an independent person for the
drilling module.

The following results were obtained in this experiment.
The models related to the normal behavior were similar. The
model created by the designer had three additional states not
considered by the independent person.

The two versions of the specified exception model
considered different exceptions. While the designer modeled
the effect of the emergency button, the independent person
considered the overheating of the spindle, which was not in
the designer models.

V. CONCLUSIONS

This paper discusses the application of the CoFI testing

methodology to a multifunctional end-effector used in the
assembly of aircraft fuselage sections.

The CoFI testing methodology has been originally
proposed to space systems, which can be defined as critical
applications. This paper discusses its applicability to
industrial automation products. Differently from space
systems, industrial automation products are usually
submitted to functional tests defined according to the
expertise of the developer. The contribution of this paper is
on the analysis of the applicability of a model based testing
methodology.

In this paper, a number of simplifications are introduced
in order to adequate it to an application of lower criticality.
The most important simplification is the selection of some of
the end-effector modules (drilling, fastening and mechanical
platform). The results of the application of CoFI to these
modules were compiled in lessons learned and were used to
revise and correct the software of these modules.
Furthermore, the lessons learned were also applied to the
other modules of FARE, allowing the detection of many
problems and errors without the need of extensive modeling.
This point suggests that a developer/programmer tends to
commit similar errors. A possible application of the CoFI
methodology is on the training of developers/programmers.

Another important simplification introduced in the CoFI
methodology is the exclusion of the manual mode of
operation from the list of services. Because of this
simplification, the state of the FARE devices are considered
unknown when a semi-automatic or automatic sequence of
operations is performed.

The influence of the human factor was analyzed by
elaborating two versions of the CoFI models for one of the
FARE module. The first version was elaborated by the
designer of the software, while the second one was
elaborated by an independent person. The comparison
showed that both models were incomplete and considered
different specified exceptions and inopportune events. Even
thought, both versions were able to detect the errors
described in this paper.

As a general conclusion, this work shows that the CoFI
can contribute to industrial automation products. However,
differently from the space area, the methodology can be
simplified (or “relaxed”). One of its most important
contributions is on training the developers to think about
exceptions and inopportune events.

REFERENCES

[1] AMBROSIO, A. M. CoFI – uma abordagem combinando teste de

conformidade e injeção de falhas para validação de software em
aplicações espaciais. Tese (Doutorado em Computação Aplicada) –
Instituto Nacional de Pesquisas Espaciais (INPE), São José dos
Campos. 2005.

[2] MARTINS, E.; SABIÃO, S. B.; AMBROSIO, A.M. ConData: a Tool
for Automating Specification-based Test Case Generation for
Communication Systems. Software Quality Journal v. 8, n. 4, p.
303-319, 1999.

[3] PONTES, R. P. et al. Embedded Critical Software Testing for
Aerospace Applications based on PUS. In: XI Workshop de Testes e
Tolerância a Falhas, p. 119-131, 2010.

[4] AGUIAR, A.J.C. Integração de rede de Petri e simulação gráfica para
verificação de células robóticas colaborativas. Tese (Mestrado) –
Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos.
2009

