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Abstract—This paper presents experimental results of a par-
allel implementation of Gusfield’s algorithm to generate cut
trees. Cut trees are a compact representation of edge-connectivity
between every pair of nodes of an undirected graph. Cut trees
have a vast number of applications in combinatorial optimization
and analysis of graphs originated in a variety of fields, including
network connectivity. We describe the implementation of Gus-
field’s algorithm using MPI. The results achieved a significant
speed-up for all real and synthetic graphs in our dataset.

I. INTRODUCTION

Parallel processing has become an important tool to improve
the solution of computing problems that require intensive
processing power or deal with large volumes of data. Parallel
computers have become cheaper and are available even as
advanced personal computers, including laptops. Morover,
it is possible to construct clusters using these processors,
further increasing the opportunities for parallelism. Within
each architecture, different software solutions exist, which
allow parallelism to be exploited easily: with a limited set
of adjustments, one can obtain parallel versions of sequential
applications. Among these solutions, some libraries such as
MPI (Message Passing Interface) stand out.

In this paper we present a MPI implementation of a well-
known cut tree algorithm. Cut trees are compact representa-
tions of minimum cuts between all pairs of vertices of an
undirected graph and have numerous applications, such as
routing, graph partitioning and connectivity ([1], [2], [3], [4])-
A cut tree of a weighted graph can be found using one of two
well-known algorithms: Gomory and Hu[5] and Gusfield[6].

Although many existing cut tree applications involve large
graphs, few works have been published on the practical appli-
cability of these algorithms for very large graphs. In particular,
heuristics that could make these algorithms more efficient have
hardly ever been studied for graphs with particular properties.
Futhermore, to the best of our knowledge, there are no parallel
or distributed algorithms for computing cut trees available.

In this paper we present a parallel implementation based on
MPI for finding cut trees. Experimental results are presented
for different graphs and a variable number of processors.

The rest of the paper is organized as follows. In Section II
we give preliminary definitions, several related to the maxi-
mum flow problem which is the basis for computing cut trees.

Section III describes Gusfield’s algorithm, including both the
sequential and parallel implementations. The Section IV de-
scribes the environment and parameters used in the executions.
The results are presented and discussed in Section V. Finally,
in Section VI we present conclusions and future work.

II. PRELIMINARY DEFINITIONS

A graph G = (V| F) is composed by a finite set of vertices
V and a set of edges E of unordered pairs {u, v} with u,v €
V. A network can be modeled as a graph, where each vertex
is a node and each edge is a logical link between two nodes.
In this model, an edge has a capacity ¢ : F — RT which
represents the flow that can be send through it. As a example,
consider the undirected graph in Fig. 1(a). The capacities are
indicated on the edges. Expanding this concept, consider a
communication between two different nodes s (source) and
t (destination), not necessarily adjacent. For any node s and
t, there is a flow value f between them which is maximum
when the flow that leaves s and reaches ¢ is the maximum
possible. Fig. 1(b) illustrates the flow values, considering the
same graph in Fig. 1(a) and using s = 1 and ¢ = 6. Each edge
was represented by two values (c, f), where ¢ is the capacity
and f the final flow passing through the edge. The maximum
flow in this case is 15, which is the sum of the flow {1,2}=5
and {1, 3}=10. For each edge, f must satisfy two conditions:
(1) it cannot exceed the capacity and (2) the flow is conserved
at each vertex v # s,t, i.e., the flow on edges converging to
v is equal to the flow leaving from v [7].

A cut of a graph G = (V, E) is a bipartition {X,V — X}
of V. The capacity of the cut is the sum of the capacities of
the edges with one vertex in X and other in V' — X. A s-t-cut
isacut {X,V — X} suchthat s € X andt € V — X. A
minimum s-t-cut is a s-t-cut of minimum capacity. The local
connectivity between s and ¢ is defined as the capacity of a
minimum s-t-cut. The local connectivity between two vertices
is equals the maximum flow between them [7].

Although the maximum flow problem is usually defined for
directed graphs, here we will describe it in terms of undirected
graphs, which are our objects of interest. However, note that
any algorithm for the problem of maximum flow can be used
to find the local connectivity between two vertices of an



(a) Example of an undirected weighted
graph

(c.)

(b) Maximum flow, s =1 and t = 6

Fig. 1. Undirected graph and Maximum flow.

undirected graph by replacing each edge by two directed edges
with same original capacity, one in each direction.

The main algorithms for computing the maximum flow
are divided into two categories: those based on augmenting
paths and those based on the operations push and relabel. An
example of algorithm in the first category is Ford-Fulkerson
[8]. The second category is formed by Algorithm Push-relabel
and its variations [9], [10].

III. ON CuT TREES

A cut tree T = (V, F) is formally defined as a weighted
undirected tree defined on the vertices of the graph according
the following properties [11]: (a) for any pair of vertices
s,t € V,A(s,t) is the minimum weight on an edge e(s,?)
in the unique path connecting s to ¢ in 7T'; (b) the bipartition
of vertices in T produced by removing e(s,t) corresponds to
the minimum s — ¢ cut in the original graph G.

Cut trees were introduced by Gomory and Hu [5] as a
structure that represents all s —¢ cuts of an undirected graph.
They used a maximum flow algorithm and graph contractions
to solve the problem. Many years later, Gusfield [6] proposed a
solution that also uses maximum flow, but it works on the input
graph without contractions. Goldberg and Tsioutsiouliklis [12]
presented an experimental study of cut trees algorithms that
propose heuristics to make Gomory-Hu and Gusfield faster.
According their results, a modified version of Gomory-Hu is
more robust than Gusfield’s algorithm. Duarte, Santini and
Cohen [2] used cut trees to compute a connectivity measure
to classify network nodes. They used this approach to identify
highly connected nodes in the network in order to find reliable
routing detours.

The two following subsections describe the implementations
of Gusfield’s algorithm in its sequential and parallel versions.

A. Gusfield’s Algorithm: Sequential Version

The sequential version of Gusfield’s algorithm consists of
n — 1 iterations of a Maximum Flow algorithm. A pseudocode

Algorithm 1 Sequential Gusfield’s Algorithm

Input: G = (V, E,¢)

Output: 7= (V, E, f), where T is a cut tree of G

V(T) « V(G); E(T)+ 0

: for tree;, flow;,1 <i < N do
tree; <+ 1; flow; < 0

end for

/I n — 1 maximum flow iterations

for s < 2 to N do
flows < MaxFlow(s, trees)
adjust the tree with Cut(s,trees)

: end for

// Generate T

9: for s < 1to N do

10 E(T) «+ E(T)U {s,trees}

11: f({s,trees}) « flows

12: end for

13: return T

AN

is illustrated on Algorithm 1. For each iteration (lines 6-9), a
different vertex is chosen as source. This choice determines
the destination vertex. Initially, all vertices of the tree point
to node 1. After the first iteration, the nodes on the source
side of the cut point to the source (node 1) and the nodes on
the destination side point to the destination (node 2). In the
second iteration, node 3 is chosen as source and node 1 or
2 is the destination, depending on which side node 3 was on
the first iteration. This process continues for each node until
n — 1 iterations are completed. The implementation of the
algorithm is simple and requires no changes in the maximum
flow algorithm.

Our choice for the maximum flow algorithm to use was the
Push-Relabel algorithm [9]. Basically it starts the process by
pushing the maximum flow allowed by the edges connected
to source s. This flow is propagated through the other edges
to find the target ¢. If the flow received by a vertex is greater
than the sum of the capacities of edges attached to that vertex,
the excess flow is returned before completion. The minimum
s-t-cut is defined by the nodes reachable from s without using
saturated edges, that is, those edges where the flow is equal
to maximum capacity.

B. Gusfield’s Algorithm: Parallel (MPI) Version

MPI has emerged in the early 1990’s as a set of libraries
for process management and message exchange in distributed
memory architectures. Its main advantage is scalability, a
consequence of the fact that it uses independent computers
that can be easily connected across the network. MPI usually
requires a set of precise modifications on the sequential version
of the algorithm to obtain the parallel solution. Usually, the
parallel computing model employed is the master/slave.

The Algorithm 2 illustrates the implementation of Gusfield’s
algorithm in MPI. The master process is procy and the slaves
are procy, ..,proc,—1. A copy of the graph is maintained by
each process. The master creates the tasks and sends them to
slaves. Each task contains the source and destination nodes
to be used in the maximum flow computation. When a slave
finishes its task, it sends the result back to the master. The



Algorithm 2 MPI Version of Gusfield’s Algorithm

Input: G = (V, E, c), proc; processors (0 < j < P)
Output: 7' = (V, E, f), where T is a cut tree of G
1 V(T)« V(G); E(T)+ 0
2: for all tree;, flow;,1 <i < N do
3: tree; «+ 1; flow; < 0
4: end for
// » — 1 maximum flow iterations

5: if proc; = 0 then
6: fors+< 1ToP—1do
7: send Task(s, trees) to procs
8: end for
9: while s < N do
10: receive a result from proc;
11: if result is valid then
12: adjust the tree with Cut(s,trees)
13: s+ s+1
14: send a new Task(s, trees) to proc;
15: else
16: send a Task(results,treeresuit,) to proc;
17: end if
18: end while
19: else
20: while more tasks do
21: executes flows < MaxFlow(s, trees)
22: send result to proco
23: end while
24: end if

/I Generate T as sequential algorithm
25: return T

TABLE I
GRAPHS USED IN THE TESTS.

Graphs ” #Vertices | #Edges
CA-CondMat 21,363 | 182,572
GeoComp 3,621 9,461
PowerGrid 4,941 6,594
P2P-Gnutella 10,876 39,994
BA 10,000 49,995
ER 10,000 49,841
DBLCYC 1,024 2,048
NOI 1,500 | 562,125
PATH 2,000 21,990
TREE 1,500 | 563,625

result contains the cut and maximum flow used by the master
to update the tree.

IV. EXPERIMENTAL SETUP

Our experiments with MPI used a cluster with 14 Intel
Core 2 Quad (2.4 GHz processors with 2 Gbyte of RAM
memory and 4096 Kbyte cache) interconnected by a Gigabit
Ethernet network. The code was written in C and compiled
with gcc and optimization option -O3. For the tests, we chose
10 graphs from different families, shown in Table I. The first
four were obtained using real data [13], [14], [15]. BA is a
power law graph generated by the Barabdasi-Albert model. ER
was generated by the classical Erdos-Rényi model (Gnp). The
last four are synthetic graphs from classes defined in [12].

In the execution of the MPI program we tested several
different configurations that could allow better performance.
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Fig. 2. Initial tests with MPI

Figure 2 shows the results of tests for executing master and
slaves in different ways. In Together, the master and one slave
run in the same machine and the others slaves run separated.
In Separated, master and slaves run in different machines.
Average Load uses 2 processes on each machine and Heavy
Load uses 4 processes on each machine. Results showed that
Together generated the best results. So, we employed this
configuration for all remaining experiments.

V. EXPERIMENTAL RESULTS

The results are shown in Table II. The first line contains the
sequential time (in seconds) from the execution of Gusfield’s
algorithm in a single processor. Results from 2 to 15 proces-
sors were obtained with the parallel execution. Excluding the
sequential execution, we show for each test the mean time (in
seconds), the speed-up (S) and the efficiency (E)'.

Results of all experiments show a significant speed-up
and efficiency. The best results were achieved with the BA
graph, for which there is no waste of computation. The worst
results happened during the tests with the Powergrid graph.
While the computation of cuts of BA are 100% recovered,
recomputations on Powergrid (with 1,500 nodes) achieved
4,000 with 15 processors. This seriously reduces the efficiency
of the solution and is the main point on which we are working
to improve results.

VI. CONCLUSION

In this paper we presented experimental results obtained
with the parallelization of Gusfield’s algorithm using MPI.
The results show a significant gain in terms of speed-up and
efficiency. We believe that it is possible to devise heuristics

The speed-up was computed as S = Tis/Tp, where T is the execution
time of the sequential version and T’p is the execution time with MPI on P
processes. The efficiency was computed using E = S/P.



MPI RESULTS. TIMES ARE IN SECONDS.

TABLE I

Number of CA-HepPh Geocomp Powergrid P2P-Gnutella BA
processors time S E time S E time S E time S E time S E
sequential 864.93 - - 3.85 - - 7.26 - - 142.00 - - 204.72 - -
2 886.82 098 049 7.39 0.52  0.26 10.48 0.69 035 | 137.82 1.03 052 | 177.82 1.I5  0.58
3 513.63 1.68  0.56 2.54 1.52 051 4.50 1.61 0.54 73.90 1.92  0.64 88.98 230 0.77
4 433.16 2.00 0.50 2.06 1.87 047 3.48 2.09 052 64.13 221 055 65.54 312 0.78
5 353.81 244 049 1.74 221 044 3.00 242 048 51.79 274 055 54.02 379  0.76
6 214.53 4.03 0.67 1.45 2.66 044 2.47 294 049 31.81 446 0.74 42.08 4.87 0.81
7 161.27 536 0.77 1.19 324 046 222 327 047 23.41 6.07 0.87 29.02 7.05 1.01
8 129.25 6.69 0.84 1.10 350 044 2.01 3.61 045 18.76 7.57 095 22.50 9.10 1.14
9 107.52 8.04 0.89 0.92 4.18 046 1.95 372 041 15.64 9.08 1.01 18.18 1126 1.25
10 92.70 933 093 0.85 453 045 1.84 395 039 13.10 10.84 1.08 1535 1334 133
11 81.33  10.63  0.97 0.79 487 044 1.99 3.65 033 11.66 12.18 1.11 1354  15.12 140
12 7326 11.81 098 0.76 507 042 1.69 430 0.36 1039  13.67 1.14 11.79  17.36 145
13 6592 13.12 1.0l 0.71 542 042 1.90 382 0.29 925 1535 1.18 11.17 1833 141
14 62.80 1377 0.98 0.63 6.11 044 1.76 413  0.29 8.65 1642 1.17 1054 1942 1.39
15 60.46 1431 0.95 0.70 550 0.37 1.89 384 0.26 836 1699 1.13 10.02 2043 1.36
Number of DBLCYC ER NOI PATH TREE
processors time S E time S E time S E time S E time S E
sequential 10.49 - - 191.26 - - 657.50 - - 5.90 - - 410.07 - -
2 13.10 0.80 040 | 203.52 094 047 | 703.64 093 047 9.80 0.60 0.30 | 434.23 094 047
3 6.49 1.62  0.54 | 103.21 1.85 0.62 | 409.89 1.60 0.53 391 1.51  0.50 | 292.41 1.40 047
4 4.46 235 059 88.37 2.16  0.54 | 301.97 2.18  0.54 3.53 1.67 0.42 | 200.02 2.05 051
5 3.40 3.09 0.62 68.97 277 055 | 209.52 3.14  0.63 2.97 1.99 040 | 135.61 3.02  0.60
6 2.75 381 0.64 42.23 453 0.75 | 138.65 4.74 0.79 2.04 289 048 96.51 425 0.71
7 2.37 443  0.63 32.10 596 0.85 | 104.65 6.28  0.90 1.68 351 050 72.16 5.68 0.81
8 2.04 514  0.64 25.30 7.56  0.94 81.83 8.03 1.00 1.40 421 053 59.76 6.86  0.86
9 1.82 576  0.64 20.66 926 1.03 68.84 9.55 1.06 1.16 5.09 057 49.01 837 093
10 1.66 632 0.63 17.83 10.70  1.07 59.51  11.05 1.10 1.07 551 055 41.98 9.77 0.98
11 1.51 695 0.63 1544 1240 1.13 53.60 1227 1.12 0.92 6.41 0.8 3727 11.00  1.00
12 1.37 7.66  0.64 1401 13.70 1.14 50.38  13.05 1.09 0.85 6.94 058 3512 11.68 0.97
13 1.28 820 0.63 1241 1540 1.19 4721 1393  1.07 0.76 776 0.60 32.08 12.78 0.98
14 1.23 8.53 0.61 11.70 1630 1.17 45.12 1457  1.04 0.71 831 0.59 30.57 1341 0.96
15 1.16 9.04 0.60 1134 1690 1.12 4240 1551 1.03 0.69 8.55 0.57 28.09 1460 0.97

to improve this gain. One of the possible optimizations is to
determine how to properly choose the source and destination
vertices so that less computations are lost, thus thus increasing
the efficiency for the the generation of the tree.

Furthermore, as multicore machines become popular, we are
also planning as future work to compare a parallel solution
to this problem using OpenMP (Open Multi-Processing), that
is an interface designed for parallel programming on shared
memory architectures.
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