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Abstract. Computing similarity of spatial objects is not a trivial task. It 
considers complex algorithms, which have high cost to compute. This work 
proposes a simple algorithm to compute similarity between polygons through 
their Four-Color Raster Signatures (4CRS) based on Jaccard index. The 
algorithm was implemented in SECONDO, an extensible DBMS platform. 
Experimental tests were conduct in order to evaluate algorithm precision and 
execution time compared to computing polygon similarity through real 
representations of polygons. Results demonstrated that raster similarity 
computation is three times faster than exact computation, and raster similarity 
precision is higher for objects with high similarity and lower for objects that 
are not very similar. Therefore, we point the use of the proposal when the 
intention is to process objects that seem to have high similarity. On the other 
hand, other algorithm must be employed for objects with low similarity, e.g., 
compute similarity on objects real representation.  

1. Introduction 
Quine (1969) and Cakmakov and Celakoska (2004) present the similarity concept as 
fundamental for learning, knowledge and thought. A similarity metric is a measure that 
allows comparison of pair of things. Examples of applications where similarity can be 
used are: medical image databases, human gesture/motion recognition, 
geologic/geographic information systems, e-commerce, trademark/copyright protection, 
computer-aided design (Sako and  Fujimura, 2000).  
 Holt (2003) presents spatial similarity as a subset of similarity. It corresponds to 
a similarity where all the entities being compared to each other have spatial components. 
 Spatial data consist of points, lines, regions, rectangles, surfaces and volumes 
(Samet, 1990). Examples of spatial data are: cities, forests, rivers, land use, partition of 
a country into districts etc. Spatial data is in practice connected to “non-spatial” data 
(e.g. alphanumeric) (Güting, 1994). Examples of non-spatial data are: names of cities, 
names of streets, addresses, telephone number etc.  
 Spatial Database Management System (SDBMS) provides the technology for 
Geographic Information Systems (GIS) and other applications (Güting, 1994). An 
important issue in database systems is efficient query processing, and the user receive a 
query answer in a short time. However, there are many cases where it is not easy to 



  

accomplish this requirement. Besides, there are situations where obtaining fast answers, 
albeit approximate, is more important to the user than exact ones. This work concerns 
data compression techniques, i.e., coding mechanisms to generate reduced (or 
compressed) data over which queries are executed. We are using spatial data signatures 
to code real data: the Four-Color Raster Signature proposed by Zimbrao and Souza 
(1998) used to represent polygons. 
 This work proposes an algorithm to compute similarity of polygons from their 
4CRS signatures, named as raster similarity. It employs Jaccard index (Jaccard, 1912) 
based on the overlapping and common areas of polygons, approximately computed 
using their raster signatures. Algorithms were implemented in SECONDO, an extensible 
database that supports non-conventional data types, for example, spatial data (Güting et 
al., 2005). Experimental tests were conducted on real data corresponding to polygons 
representing municipalities from north Region of Brazil. The tests were conducted to 
evaluate the precision of the algorithm and execution time. 
 This remainder of this work is divided as follows. Section 2 presents the main 
concepts used in this work. Section 3 presents the proposal, and related algorithms. 
Section 4 is dedicated to the implementation details and experimental tests, as well as 
corresponding analysis. Finally, Section 5 presents our conclusions.  

2. Theoretical grounding 
 Approximate Query Processing arises as an alternative to query processing in 
envirnments for which providing an exact answer results in undesirable response times. 
The goal is to provide an estimated response in orders of magnitude less time than the 
time to compute an exact answer by avoiding or minimizing the number of accesses to 
the base data (Gibbons et al., 1997). Some examples of approximate query processing 
are: (i) Decision Support Systems, to present aggregate data for decision makers in 
reasonable time  (Hellerstein et al., 1997) (ii) Ad-hoc data mining, during a drill-down 
query sequence, the earlier queries in the sequence can be used solely to determine what 
the interesting queries are (Hellerstein et al., 1997). (iii) Spatial OLAP (Online 
Analytical Processing) (Papadias et al., 2001) to provide fast access to precomputed and 
summarized data for queries over aggregated data. (iv) Query processing: to provide 
feedback on how well posed a query is, and even as a tentative answer to a query when 
the base data is unavailable (Gibbons et al., 1997). 

 Four-Colour Raster Signature (4CRS) was proposed by Zimbrao and Souza 
(1998). It is a signature that stores polygon main features in an approximate and 
compressed representation. The signature can be accessed and processed faster than real 
data. It corresponds to a grid of cells (Figure 1.b) where each cell store relevant 
information of object using few bits (Figure 1.a). Grid scale can be adjusted in order to 
obtain a more compressed representation (lower scale) or a more precise representation 
(higher scale). 

 Scale change is used to ensure that signature cells of two 4CRS have same size 
and that the intersecting cells have the same corner coordinates. One approach to meet 
this requirement is cells’ edge size be a power of two (2n), and that the beginning of 
each cell be multiple of the same power of two (a2n), as proposed by Zimbrao and Souza 
(1998). If this requirement is not accomplished, signatures cells may not overlap as 



  

presented in Figure 2.a, and it is not possible to compare directly polygons signatures. 
Hence a better approach is perfect overlap of signature cells, as illustrated in Figure 2.b. 
It is important to emphasize that different signatures can have different cell size. Scale 
change is accomplished by grouping cells of the signature with smaller cell size, since it 
is not possible to subdivide a bigger cell to produce smaller ones. 

 
Figure 1. (a) Types of Cell in the 4CRS (Zimbrao and Souza, 1998) and (b) an 
example of 4CRS (Azevedo et al., 2004) 

 
Figure 2. (a) Signatures whose cells do not overlap; (b) Perfect overlap  

 Zimbrao and Souza (1998) presented good results when 4CRS was used to 
approximate polygons in exact query processing using the Multi-step Processing of 
Spatial Joins  architecture (Brinkhoff et al., 1994). This motivates the use of 4CRS for 
approximate query processing, and a set of algorithms was proposed by Azevedo et al. 
(2004, 2005, 2006). These algorithms were evaluated against exact query processing and 
demonstrated also good results. 
 Approximate query processing using 4CRS corresponds to, instead of using as 
input the real object, use object’s 4CRS signature, and return an approximate response, 
along with a confidence interval. As an example, the algorithm that computes the 
approximate area of a polygon p (Azevedo et al., 2004) returns an area value v, and an 
interval i with confidence c. The response is that real area is between v-i and v+i, with 
confidence c. 

3.   Algorithms to Compute Raster Similarity 
A similarity function, in an intuitive sense, returns the similarity of objects considering 
size, shape, and position in space. For instance, for spatial objects that have area, 
similarity can be computed as the ratio of intersection and union areas, as presented in 
Equation 1. This equation is an intuitive metric, and it is named as Jaccard index 
(Jaccard, 1912), as presented by Hemert and Baldock (2007).  



  

 S(o1,o2) = (A(o1,o2)) / (A(o1,o2))  (1) 
Where: 

• o1 and o2: spatial objects that have area 
• A: approximate overlapping area of polygons 
• A: approximate union area of polygons 

  This work proposes to replace, in Equation 1, o1 and o2 by their 4CRS. The 
algorithm is presented in Figure 3. It has as input the 4CRS of two polygon, and returns 
a value between the interval [0, 1] that indicates polygons similarity. The algorithm 
employs other three algorithms: compute approximate area of polygon (Figure 4), 
compute intersection area of polygons (Figure 5), and compute 4CRS union (Figure 6). 
REAL similar(signat4CRS1, signat4CRS2) 
  intersArea = approxIntersectionArea(signat4CRS1, signat4CRS2); 
  IF(intersArea = 0) /* Does not exist intersection area */ 
    RETURN 0; 
  ELSE /* Exists intersection area */ 
    unionSignat = unionSignat4CRS(signat4CRS1, signat4CRS2); 
    unionArea = approximateArea(unionSignat);  
  RETURN intersArea / unionArea; 

Figure 3. Algorithm to compute raster similarity of polygons 

 The algorithm to compute polygon approximate area (Azevedo et al., 2004) 
(Figure 4) returns polygon area summing the expected area of the polygon inside each 
type of signature’s cells. The expected areas for Empty, Weak, Strong and Full cells are 
0%, 25%, 75% and 100%, respectively. 
REAL approximateArea(signat4CRS) 
  nWeakCells = nStrongCells = nFullCells = 0; 
  cellArea = signat4CRS.edgeSize * signat4CRS.edgeSize; 
  FOR EACH cell IN signat4CRS.cells DO 
    IF (cell.type = WEAK) 
      nWeakCells= nWeakCells+1; 
    ELSE IF (cell.type = STRONG) 
      nStrongCells = nStrongCells + 1; 
    ELSE IF (cell.type == FULL) 
      nFullCells = nFullCells + 1; 
  RETURN (nWeakCells * weakWeight + nStrongCells * strongWeight  
          + nFullCells * fullWeight) * cellArea; 

Figure 4. Algorithm to compute approximate area of polygon 

 The algorithm to compute the approximate overlapping area of two polygons 
(Azevedo et al., 2005) (Figure 5) sums the expected area of cell types that overlap, and 
multiplies this value by the cell area. There are four types of cell; hence there are sixteen 
possibilities of types of cells that overlap, as proposed by Azevedo et al. (2005). 

REAL approxIntersectionArea(signat4CRS1, signat4CRS2) 
  interMBR = intersectionMBR(signat4CRS1, signat4CRS2); 
  IF (signat4CRS1.edgeSize = signat4CRS2.edgeSize) then 

s4CRS = signat4CRS1; 
b4CRS = signat4CRS2; 

  ELSE 
s4CRS = smallerCellSide(signat4CRS1, signat4CRS2); 
b4CRS = biggerCellSide (signat4CRS1, signat4CRS2); 

  appArea = 0; 
  FOR EACH b4CRS cell b THAT IS inside interMBR DO 

FOR EACH s4CRS cell s THAT IS inside cell b DO 
  appArea = appArea + expectedArea[s.type,b.type]; 
  cellArea = s4CRS.edgeSize * s4CRS.edgeSize; 

RETURN appArea * cellArea;   

Figure 5. Algorithm to compute overlapping (intersection) area of polygons 



  

 The algorithm to compute the signature resulting from the union of two raster 
signatures is used to compute raster similarity, and it is also a contribution of this work. 
It computes the signature as follows: if there is intersection MBR (Minimum Bound 
Rectangle) of the signatures, then a new signature is created and returned. On the other 
hand, when there is not intersection MBR, then NULL is returned. This simplification 
was done because if there is no intersection between the signatures, than raster similarity 
is zero. Some comments help to understand the algorithm (Figure 6). More details about 
algorithm implementations are presented by Antunes and Azevedo (2011). 

SIGNAT4CRS unionSignat4CRS(signat4CRS1, signat4CRS2) 
  IF existsIntersection(signat4CRS1, signat4CRS2) 
    IF (signat4CRS1.edgeSize > signat4CRS2.edgeSize) 
      b4CRS = signat4CRS1; 
      s4CRS = changeScale(signat4CRS2, signat4CRS1.edgeSize); 
    ELSE 
      b4CRS = signat4CRS2; 
      s4CRS = changeScale(signat4CRS1, signat4CRS2.edgeSize); 
      /*unionMBR: MBR that encloses  MBRs of s4CRS and b4CRS */ 
      unionMBR = computeUnionMBR(s4CRS.MBR, b4CRS.MBR) 
      /*Creates 4CRS with Empty Cells */ 
      n4CRS = createSignature(unionMBR, b4CRS.edgeSize, VAZIO); 
      /*Mark each n4crs cell by the union of s4CRS and b4CRS cells*/ 
      FOR EACH b4CRS cell b that intersects n4CRS cell n DO 
        n.type = b.type; 
        FOR EACH s4CRS cell s that intersects n4CRS cell n DO 
          IF n.type = EMPTY OR s. type = FULL 
            n. type = s. type; 
          ELSE IF n. type = WEAK AND s. type = STRONG 
            n. type = s. type; 
      RETURN n4CRS; 
  ELSE 
    RETURN NULL; 

Figure 6. Algorithm to compute union of two 4CRS 

 In approximate query processing, along with the response, it is also important to 
return a confidence interval. The user can use this interval to decide if the precision of 
the answer is enough. Equation 2, employed by Azevedo et al. (2004, 2005), presents 
the function to compute the confidence interval for the approximate area and 
approximate overlapping area algorithms. To execute the calculus, it is required to 
compute the average and variance of expected area and overlapping expected area. 
      Confidence interval (CI) = n nc × [c ± p × (c2/nc)]  (2) 
Where: 

• c: type of cell or combination of type of cells, according to the 
algorithm 

• c: average (expected area or overlapping expected area) 
• c2: variance 
• p: confidence interval, e.g., 1.96 for a confidence interval of 95% 
• nc: number of type of cells. 

 In this work, we propose a confidence interval for raster similarity, presented in 
Equation 3, based on the proposals of Azevedo et al. (2004, 2005). 
CIRaster similarity = [(A - CI)/(A + CI); (A + CI)/(A - CI)] (3) 
Where:  

• A: approximate overlapping area of raster signatures 
• A: approximate area of union of raster signatures 
• IC: confidence interval variance of approximate overlapping area 
• CI: confidence interval variance of approximate area of union of 

signatures 



  

 An example of confidence interval calculus is presented in Figure 7. Consider 
that the algorithm execution returned the following data: A: 4.95 × 106; A: 1.27 × 107; 
CI: 2.37 × 105; and, CI: 2.45 × 105. Using Equation 3 the confidence interval is: 
 
CIRaster Similarity = [(4.95 × 106 – 2.37 × 105)/(1.27 × 107 + 2.45 × 105), 
                 (4.95 × 106 + 2.37 × 105)/(1.27 × 107 – 2.45 × 105)] 
CIRaster Similarity = [(4.72 × 106)/(1.30 × 107),(5.19 × 106)/(1.25 × 107)] 
CIRaster Similarity = [0.364, 0.416] 

Figure 7. Example of confidence interval calculus 

4. Experimental Evaluation 

4.1. Algorithm implementation 
The algorithms were implemented in SECONDO - a generic environment that supports 
database systems implementation for a large number of data models and query 
languages (Güting et al., 2005). It is developed as a research prototype at Fernuniversität 
in Hagen. Implementations in SECONDO are done in algebras. Algebras are based on 
the concept of second-order signature (Güting, 1993): the first signature describes type 
constructors and second signature describes operations over these types. As an example, 
raster similarity operator has the specification presented in Figure 8. 
Name: rSimilar 
Signature: (Raster4CRS, Raster4CRS) -> approxresult 
Sintax: _ rSimilar _ 
Meaning: Returns percent. of similarity between two 4CRS with its confidence interval. 
Example: query raster4CRS1 rSimilar raster4CRS2 

Figure 8. Specification of raster similarity algorithm 

 All implementations employed in this work are available from the following 
googlecode project: http://code.google.com/p/raster4crs-project/. The project 
corresponds to all implementations of Raster Algebra, and the algorithm proposed in 
this work. In the root directory, there is a readme file that explains how to install this 
algebra after SECONDO installation. SECONDO is available from http://dna.fernuni-
hagen.de/Secondo.html). 

4.2. Experimental tests 
Experimental tests were performed in order to evaluate the precision and execution time 
of raster similarity algorithm against polygon similarity computed through real 
representations of polygons.  In the experimental tests, there were used a sample of 382 
polygons that represents municipalities from north of Brazil (BRNorth). In order to 
evaluate raster similarity operator, we generated another data set that overlaps with 
BRNorth. Original polygons were randomly shifted in the x and y axes, as proposed by 
Brinkhoff et al. (1994), and the data set BRNorthT were generated. Figure 9 presents the 
data sets. Afterwards, 4CRS signatures were generated for each object of these data sets. 
All commands used to execute the tests are available in the googlecode project file 
“Experimental tests of similarity operation”. 
 The next step was to compute the similarity. We collect time of hot execution 
time. The hot execution time was calculated as the average execution time from a total 
of 10 executions of the same query, discarding the first, the highest and the slowest 
times so as to avoid outliers. The time to compute similarity from real polygons was 



  

41.187 seconds, while the time to compute similarity from polygons’ 4CRS signatures 
was 14.406 seconds. Considering this dataset, computing raster similarity is three times 
faster than computing similarity from real representation of polygons. 

  
Figure 9. Overlapping of BRNorth and BRNorthT 

 Afterwards we studied the algorithm precision. We noticed that there were some 
outliers among the similarity of pair of objects. Objects with very low similarity have 
big error. Then, to compute the error average the results between percentiles 20 and 80 
were considered, excluding extreme values that could bias the average. The error 
average and error standard deviation of results between percentile 20 and 80 were 13% 
and 10%. The error median was 10%, and it was used to divide the samples to be 
studied in two groups: “results above error median (more than 10% of error)” (Table 1) 
and “results below error median (less than 10% of error)” (Table 2). Due to lack of 
space, only the most interesting samples for discussion are presented.  
 The column labels are: (a) ID, IDT: BRNorth and BRNorthT object identifiers; 
(b) SB, SBT: BRNorth and BRNorthT signatures’ length size (size of block); (c) NC: 
number of cells of signatures that overlap, discarding intersections with Empty cells; (d) 
EIA, AIA: exact intersection area and approximate intersection (overlapping) area; (e) 
%EAIA: percentage error of approximate intersection area (f) EUA, AUA: exact and 
approximate union area; (g) %EAUA: percentage error of approximate union area; (h) 
%RasterS: raster similarity in percentage; (i) %RealS: similarity in percentage computed 
from real objects; (j) %ES: percentage error of raster similarity (calculated according to 
Equation 3); (k) %AD: percentage of absolute difference between real similarity and 
raster similarity ( |%RasterS - %RealS| ). 
%ES = |RasterS - RealS| / RealS  (3) 

Table 1. Results above error median 

              
              
              
              
              
             

                



  

Table 2. Results below error median 

              
              
              
              
              
              
              
              
              
              
              
              
              

              
              
              
              
                

4.2. Result analysis 
Raster similarity is computed by the ratio of approximate overlapping area divided by 
approximate union area. So, it is important to analyze how the overlapping (intersection) 
area and union area values impact the precision of results. In Figure 10, Y-axis presents 
percentage of error, while X-axis presents the objects sorted from highest percentage 
error to lowest percentage error. The percentage error of the area of union of two 4CRS 
signature is relatively low, while percentage error of raster similarity grows along with 
percentage error of approximate intersection area. Therefore, if the error of approximate 
intersection area is small, then the error of raster similarity is small as well.  
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Figure 10. Percentage error of approximate intersection area, approximate 
union area and raster similarity 

 The worst error of raster similarity algorithm is presented in the first line of 
Table 1, corresponding to similarity of objects 234 × 397. The objects are presented in 
Figure 11.a. In this case, there are only two cells that intersect (column NC). Raster 
similarity is 0.58% (column RasterS) and real similarity is almost 0% (column RealS). 
The percentage error is very high (257,252.94%) (column %ES). Similar results occur 
with objects 10 × 25 (Table 1 and Figure 11.b).  It is important to notice that in both 
examples it is required to execute a scale change of a signature with 256 unities of cell 
size to a 1024 unities of cell size (columns SB and SBT). The scale change has the goal 



  

to ensure the execution of the algorithm on signatures of same cell size. The scale 
change is executed grouping a set of cells of the signature with small cell size to 
represent one cell of the signature with bigger cell size, as presented in Section 2.  

 
 

 
 

 

 

 
(a) O bj . 23 4 x O bj.  
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(b) O bj.  10  x O bj . 25  (c) O bj .  2  x  O bj.  5 (d ) O bj . 1 40 x O bj.  14 6  

Figure 11.  Overlapping objects highlighted in Table 1 and Table 2 

 In the raster similarity calculus of objects 2 × 5 (Table 1 and Figure 11.c), the 
percentage error of raster similarity is equals to 108.86%. Raster similarity is equals to 
15.63% while real similarity is equals to 7.48%.  There are more cells that intersect 
related to the previous example (e.g., NC is equals to 26). However, this number is still 
small, and it was also required to execute scale change from 512 to 1024. Looking at the 
type of cells that intersects (Weak × Weak, Weak × Strong, Weak × Full, Strong × Full, 
Strong × Strong, and Full × Full) (Table 3 - line 1), we can notice that there is no 
intersection of Full × Full cells, which is the best case were the precision is 100%. 

Table 3. Number of type of cells that overlap 

Objects W × W W × S W ×F S × S S × F F × F Total 
Obj. 2    × Obj. 5 2 7 6 6 5 0 26 

Obj. 188 × Obj. 379 2 1 6 3 6 4 22 

Obj. 153 × Obj. 97 3 6 8 2 5 2 26 

 Obj. 24  × Obj. 14 5 7 18 5 16 29 90 

Obj. 188 × Obj. 188 10 9 23 7 33 81 163 

 On the other hand, in case of raster similarity of objects 140 × 146 (Table 1 and 
Figure 11.d), there is no scale change, but the number of cells is very small (9 cells). 
Besides raster similarity and real similarity are very small (0.96% and 0.46%, 
respectively). Hence the error is 107.88%. 
 It is important to emphasize that in all cases of Table 1 where the similarity is 
small, the  percentage of absolute difference between real similarity and raster similarity 
is quite small (column %AD). 
 We conclude that three main situations contribute to the error: (i) small number 
of overlapping cells; (ii) majority of overlaps involves cell types whose approximation 
of overlapping area consider the average (Weak × Weak, Weak × Strong, Weak × Full, 
Strong × Full, Strong × Strong); and, (iii) scale change. 
 On the other hand, there are other cases where the precision of raster similarity 
were quite good. For example, in the case of the similarity of objects 188 × 379 (Table 2 
and Figure 12.a), the error of raster similarity is 9.64%. Raster similarity is equal to 
7.33% and real similarity is 6.69%. The number of cells is small (22 cells), but now 
there are 4 overlaps of Full × Full cells (Table 3 - line 2), where the precision is 100%. 
 In another example, corresponding to similarity of objects 153 × 97 (Table 2 and 
Figure 12.b), the error of raster similarity is 7.97%. Raster similarity is equals to 



  

13.15%, and real similarity is equal to 14.29%. There are two overlaps of Full × Full 
cells (Table 3 – line 3) and the number of cells that intersect is big (35 cells). 
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Figure 12. Overlapping objects highlighted in Table 3 and Table 4 

  In the case of similarity of objects 24 × 14 (Table 2 and Figure 12.c), the error of 
raster similarity is 1.51%. Raster similarity is equals to 36.98% and real similarity is 
37.55%. In this case, the number of overlapping cells is 80 and, there are 29 overlaps of 
Full × Full cells (Table 3 – line 4). 
 One of the best results is the similarity of objects 188 × 188 (Table 2 and Figure 
12.d). The error of raster similarity is only 0.28%, raster similarity is 56.88% and real 
similarity is 57.03%. The number of cells that overlap is big (163 overlapping cells) and 
the majority of overlaps are Full × Full cells (81 Full × Full - Table 3 – line 5). 
 Based on all results presented, we can conclude that the error of the algorithm 
(highlighted in Figure 10) can be explained because of the approximate intersection area 
corresponding to the overlap of cell types  Weak × Weak, Weak × Strong, Weak × Full, 
Strong × Full, Strong × Strong. When the number of overlaps of these types of cells is 
small, we cannot assume Normal Distribution, as proposed by Azevedo et al. (2004, 
2005) to estimate expected area of polygon and expected overlapping area of polygons. 
Hence two cases can result: (i) When the exact intersection area is close to the average, 
the approximate result is close to the real result; (ii) When the exact intersection area is 
not close to the average, the approximate result is also not close to the exact value. This 
is not the case when Normal Distribution can be applied (Azevedo et al., 2004, 2005). 
Besides, we observe in our tests that the error above 10% happens when overlapping of 
objects are on their borders; while in the results with less than 10% of error, objects 
have more Full × Full cell overlaps. Therefore, it confirms that the intersection area 
contributes the most to the error, and it is required to improve the algorithm to compute 
the approximate intersection area. 
 Regarding confidence interval, presented in Equation 3 (Section 3), for the 
results with error above 10%, in 70% of cases, the real similarity was in the interval. In 
other words, real similarity was between minimum and maximum values computed for 
the  confidence interval presented in Equation 2. On the other hand, for results with 
error below 10%, in 96% of cases, real similarity was in the confidence interval. 

5. Conclusions 
The main contribution of this work is a proposal of an algorithm to compute similarity 
of polygons from their 4CRS signatures. Other contributions were the proposal of 
algorithm to compute union of two 4CRS signatures and the implementations in 
SECONDO (Güting et al., 2005) of these two algorithms and algorithms to compute 



  

approximate area of polygons and algorithm to compute approximate overlapping area 
of polygons (Azevedo et al. , 2004, 2005). 
 Experimental tests were executed over real data corresponding to municipalities 
from North Region of Brazil. The results demonstrated the proposed raster similarity 
algorithm is three times faster than the algorithm that computes similarity using real 
representation of objects. However, raster similarity algorithm’s precision varies. 
Because of some outliers, the percentile 20 and 80 were used to extract a reasonable and 
interesting sampling for analysis. Among the select objects the median value of error 
was identified as equals to 10%, and error values below and above 10% was analyzed. 
 We concluded that the errors above 10% occur when there is small overlapping 
of objects. The reasons for the error are: (i) small number of overlapping cells of 
signatures and, consequently, the value of similarity is quite small; (ii) majority of 
overlapping involves cell types whose approximation consider the average (Weak × 
Weak, Weak × Strong, Weak × Full, Strong × Full, Strong × Strong), which means that 
the intersection of objects are in their borders; and, (iii) the scale change required to 
execute the algorithm to compute union of raster signatures. In parallel, the results were 
quite good for cases where overlaps were bigger.  
  So we can state that, the bigger is the value of raster similarity, the closer it is to 
the real similarity. On the other hand, there is a big error in percentage when the value 
of raster similarity is small. So, if the use of the algorithm intends to discover objects 
with high similarity, our proposal is a good choice. However, in case of interest is low 
similarity value, it is better to execute, e.g., the algorithm to compute the real similarity. 
 We also evaluate our proposal to compute the confidence interval, presented in 
Equation 3. For the results with error above 10%, in 70% of cases, the real similarity 
was in the interval. On the other hand, for results with error below 10%, in 96% of cases 
the real similarity was in the interval. As we employed a 95% of confidence to compute 
the confidence interval, we can state that our proposal is adequate for high values of 
raster similarity, but it must be improved for low values of raster similarity. 
 As future work, we propose: improving the algorithm to compute approximate 
overlapping area, since the error of raster similarity is highly dependent from 
overlapping area error, as highlighted in Figure 10; execute performance evaluations 
considering others datasets; evaluate the use of synthetic data to identify the threshold of 
similarity for most useful use and recommendation of the algorithm; improve the 
algorithm to be used in other scenarios, e.g., to compare objects according to their 
shape, independent from their size and without executing scale change (e.g., compare a 
model of an object in small size, against a real one); implement a view for Raster 
objects in SECONDO, which can help to debug the algorithm, and to analyze results. 
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