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ABSTRACT: Meaningful accuracy assessment is a sine qua non condition for the use of increasingly precise and available thematic 
maps. Despite several caveats raised in the literature, the kappa coefficient is still extensively used as an accuracy assessment tool. 
However, it fails to take into account the spatial nature of remote sensing data, penalizes agreement on area estimation and relies 
upon hypotheses that are explicitly violated by classification methods such as Geographic Object-Based Image Analysis. Based on 
the fact that area estimation accuracy measurement is trivial, an innovative and comprehensive framework focusing on the spatial 
accuracy of categorical maps is built and discussed in this paper. The framework considers not only overlaps between the reference 
and the classification but also spatial vicinity and does not rely on hypotheses that are in contradiction with the assessment of spatial 
data. Two class-specific indicators are then designed and the ability of generating probability maps explained. The theoretical 
developments are followed by simulations illustrating specific cases.  
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1. INTRODUCTION 

In the last decades, remote sensing data gave rise to a plethora 
of methods for the production of thematic maps. Large areas are 
now covered with an unprecedented spatial detail. At the same 
time, there is a constant need for accuracy assessments of the 
outcomes from automated classifications. 
  
The mainstream validation technique for categorical maps was 
and still is the kappa coefficient. Initially proposed by Cohen 
(1960) as a measure of diagnostic agreement between 
psychologists, this measure has been widely accepted and 
adopted by the GIS and remote sensing community after its 
introduction by Congalton and Mead (1983). The idea is to 
build a confusion matrix summarizing the agreement in terms of 
spatial overlap (or common categorisation) between a reference 
dataset, and the thematic map to be assessed. 
 
The reasons for the success of the kappa coefficient are four-
fold: (i) when computing the proportion of agreement, it 
removes from consideration chance agreement, determined by 
the marginal distributions of the reference and the classification, 
(ii) it is sensitive to both position agreement (overlap) and area 
estimation, (iii) it varies over a convenient range going from -1 
to 1 and (iv) it has a correlation-like value interpretation where 
0 corresponds to the random case, 1 to a perfect agreement and 
-1 to a perfect disagreement (note that -1 is achieved only in the 
case of a reversed classification of 2 equiareal classes). 
 
Despite its appeal, caveats have been raised in the literature 
with respect to kappa’s (mis)use. In the field of psychology, 
Brennan and Prediger (1981) discussed the specific definition 
of chance agreement that the index relies on: marginals 
(frequency of each class) are assumed to be fixed. Transposed to 
the assessment of thematic maps, this means that the proportion 
of each class is a predefined value (programmed to be reached) 
rather than an output of the classification. Even if reasonable in 
some cases, this assumption significantly reduces the scope of 

application of most classification. Moreover, although the 
kappa’s sensitivity to area estimation hinges on this definition 
of chance agreement, it is worth noting that the index is 
negatively - and not positively - related with higher agreement 
on estimated areas. This can be checked by deriving the kappa 
with respect to pc (the proportion of units for which agreement 
is expected by chance); and holding constant po (the proportion 
of units in which the judges agreed). As po is a proportion thus 
smaller or equal to 1, equation 1 shows that the kappa decreases 
with increases on po. Now, as pc is the sum of the reference’s 
and classification’s marginal products, it increases the higher is 
the agreement between the marginals which consequently has a 
negative impact on the kappa. In other words, for a given 
overlap area (unchanged sum of diagonal entries in the 
confusion matrix), the kappa will be maximized for higher 
discrepancies between the estimated area of the classes. 
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Among the assumptions that Brennan and Prediger (1981) state 
as underlying to the computation of the kappa coefficient, the 
fact that the entries of the confusion matrix should be 
independent is explicitly violated by Geographic Object-Based 
Image Analysis (GEOBIA) or any other classification method 
that integrates contextual information. As pixel labelling 
depends on its properties as well as the ones from its 
neighbours, independency is not fulfilled. Finally, the fact that 
the classification and the reference are treated symmetrically is 
an issue raised by Brennan and Prediger (1981) that pleads 
against the utilization of the kappa coefficient for the 
assessment of thematic maps since the reference is considered 
as the truth. Interestingly enough, the kappa coefficient has 
firstly been used by the remote sensing community (Congalton 
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and Mead, 1983) to test the consistency between 
photointerpreters, not for accuracy assessment. 
 
Understanding the previously mentioned properties is perhaps 
enough to discourage assessments of categorical maps to be 
based on the kappa coefficient. However, in the fields of GIS 
and remote sensing, the most important criticism to the index is 
that it neglects the very essential dimension of the data to be 
evaluated, viz. space. In fact, the confusion matrix between the 
reference map and the assessed classification focus on the 
respective proportions of each class and how they overlap, 
disregarding neighbouring pixels and object morphology. 
Figure 1 illustrates this problem by showing 5 classifications 
sharing the same kappa but with markedly different spatial 
patterns. 
 

 

 
 
Figure 1. Classifications with identical kappa values but different 
spatial patterns. Category 1 is represented by red+yellow pixels 
surrounded by a black dashed  square in the reference and by red+cyan 
pixels in the classification. Agreement over classes 1 and 2 is 
respectively shown by red and dark blue areas while yellow and cyan 
highlight disagreements. 
 
 
Pontius (2000), in an early attempt to remedy this problem, 
proposed a method to decompose the agreement in “due to 
chance”, “due to quantity” (over/under estimation of the areas) 
and “due to location”. His idea is to use kappa-like coefficients, 
adjusting the expected agreement proportions due to chance and 
the maximum possible agreement level given different abilities 
to correctly estimate the quantities of each class and/or their 
location. Notwithstanding its undeniable contribution to the 
improvement of thematic map assessments, this method still 
relies on the hypothesis of independence of pixels, implies 
symmetry between the reference and the classification and, with 
respect to its scope to evaluate the spatial accuracy of the 
classification, only considers overlaps. Only in 2010, with the 
development of the object fate analysis by Albrecht et al. 
(2010), has spatial vicinity been explicitly taken into account by 
applying buffers around the classification and the reference. 
However, object fate analysis seeks to evaluate uncertainty of 
object boundaries rather than the spatial validity of a 
classification. With respect to the hypothesis of independence 
of the entries in the confusion matrix, the use of objects instead 
of pixels in the validation process has been proposed (Desclée, 
2006; Radoux, 2010) but it only applies if there are thematic but 
not segmentation differences between the classification and the 
reference. 
  

Conversely, this paper proposes a framework for the analysis of 
the spatial accuracy of a classification and distinguishes 
classifications such as illustrated in Figure1. Since agreement 
on area estimates is a trivial computation, the proposed method 
is insensitive to area estimation errors, and consequently makes 
no assumption concerning the marginals. Instead, it specifically 
focuses on the ability of the classification to reproduce the 
spatial pattern of the reference. The index is class specific, 
which gives additional information about the assessed 
classification, but can be aggregated in different ways. 
Furthermore, the approach is not hindered by the assumption of 
independence of the confusion matrix entries, making it 
particularly suitable for the assessment of GEOBIAs, and is not 
symmetric with respect to the reference and the classification. 
Last but not least, probability maps can be produced over the 
whole classification area. 
 
 

2. METHODS 

2.1 Theoretical Framework 

The theoretical framework exposed here enables the assessment 
of the spatial validity of a classification (C) over an area (A) 
when compared to a reference (R). The reference is assumed to 
be the truth and should fully cover a subset region of the 
classified area (As). C and R are assumed to be composed of n 
classes, all of them with strictly positive areas over As. The set 
of objects from class i within As will be noted ci and r i for the 
classification and the reference respectively, while the function 
a(.) will be used to get the surface of any set of objects. 
 
 

 
Figure 2. Reference in blue, classification in green 

 
 
To start, consider the stylized example in Figure 2 representing 
a reference and a classification over the area As.  Without loss 
of generality, let us assume that As=1. The class of interest 
consists of a blue rectangle in the reference (r i) and a green 
square in the classification (ci). The classification overestimates 
the area of class i with a(ci)=0.5 versus a(ri)=0.25. Their 
overlapping area a(ri∩ci) equals 0.1875 and corresponds to 75% 
of a(ri). Now, let us represent ci in a bi-dimensional space 
where the x-axis has the proportion of As covered by ci while 
the y-axis has the proportion of a(ri) covered by ci. This point 
(Cla) is represented in Figure 3 with a(ci)/As=0.5 and 
a(ri∩ci)/a(ri)=0.75. The reference is represented in the same 
space (Ref) with a(ri)/As=0.25 and a(ri ∩ r i)/ a(ri)=1. 
 
The distance between the two points (Cla and Ref) is a first 
quality indicator for the class i of the classification C: the 
smaller it is and the better the classification performs. This 
distance can be decomposed into two effects: (i) over/under 
estimation of the class area, measured by the distance between 

603



 

the projections of the points on the x-axis; and (ii) the 
proportion of the class i that C could not detect, measured by 
the distance between the projections of the points on the y-axis. 
 
 

 
Figure 3. Representation of a reference and a classification.  

 
 
Although useful, these quality indicators do not measure the 
spatial agreement between the structures of ci and ri. Indeed, the 
decomposed transition from Cla to Ref is made by (i) excluding 
from ci only wrongly detected objects up to the point a(ci)= 
a(ri) (x-axis transition) and (ii) by replacing the remaining 
wrong ones by correct detections in a spatial selective process 
(y-axis transition); and consequently by changing the spatial 
structure of ci.  
 
A way to avoid this spatial selection is to make a(ci) vary 
through a buffering process such as illustrated in Figure 4. In 
the image on the left, positive buffers (i.e. inflation) are 
iteratively applied to ci elements until r i is fully contained by the 
buffered ci. In the image on the right, a(ci) is lessened up to the 
point it equals a(ri) through negative buffering (i.e. deflation) 
on ci. The so buffered ci will be noted ci,b+ and ci,b-. 
 
 

   
 

Figure 4. Positive and negative buffering processes - left and right 
images respectively- over ci. Positive buffers have been applied until r i 
is contained in ci; negative buffers have been applied until a(ci)=a(r i).    

 
 
The new sets of objects ci,b+ and ci,b- can then be represented in 
the previously used bi-dimensional space. In Figure 5, 
positively and negatively buffered ci are represented by the 
remarkable points P+ and P- respectively. Since ci,b+ contains r i, 
the value of P+ on the y-axis reaches 1 while in the x-axis 
appears the proportion of As covered by ci,b+. In other words, 
this point informs about how inflated ci should be in order to 
avoid omission errors in class i. The better is ci and the smaller 
are the needed buffers, and consequently the higher is the slope 

between Cla and P+. Conversely, P- is the point in the curve for 
which a(ci,b-)= a(r i).     
 
A continuum of points can be marginally generated in the same 
way for different sizes of negative and positive buffers, until the 
bounds of the graph are reached. The lower bound, (0,0), is 
reached when ci totally fades away following the successive 
application of negative buffers and a(ci)=0; while the upper 
bound, (1,1) is reached when positive buffers are applied up to 
the moment ci covers the whole validation area and a(ci)=As. 
The result of this succession of points forms a buffer curve (BC) 
in what we name the buffer box (green line in Figure 5).  
 
 

 
Figure 5. Buffer box representing a reference and a classification. 

 
 
A similar curve can be generated for r i with respect to itself and 
defines the best reachable classification (blue line in Figure 5). 
Contrariwise, the BC corresponding to the potentially worst ci is 
obtained by the application of negative and positive buffers to 
the complement of r i over the validation area. It corresponds to 
the red line in Figure 5 stylized case. 
 
Buffer curves have the following properties for any 
classification and reference: 
 
1. The curve passes through (0,0), when the applied buffers 

are negative enough and (1,1) when the buffered class fully 
covers As; 
 

2. It is increasing but not strictly increasing; 
 

3. The case of a random classification corresponds to the 
diagonal of the box (grey line on Figure 5). As elements of a 
random ci are randomly located within the validation area, 
the proportion of As covered by them is expected to be the 
same than the proportion of r i they cover. The same applies 
after the application of buffers; 
 

4. It is insensitive to changes on the marginal class distribution 
of C. Indeed, a change in the marginal that respects the 
spatial structure of the class i merely leads to a displacement 
of Cla on the unchanged buffer curve. The same does not 
apply for marginal changes on R since a(ri) would be 
impacted and consequently the y-axis ; 
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5. The best possible spatial pattern for ci (blue curve, built by 
applying buffers on r i), is defined by two straight lines: from 
(0,0) to (a(ri)/As,1) and then to (1,1); 
 

6. The worst possible spatial pattern for ci (red curve, built by 
applying buffers on the complementary of r i), is defined by 
two straight lines: from (0,0) to (1- a(ri)/As,0) and then to 
(1,1); 
 

7. Its maximum slope over the domain equals As/a(ri); 
 

8. Its first derivative is sensitive to false and missed objects. 
False objects tend to have a negative impact on the slope 
while missed ones, when detected by positive buffers, tend 
to increase it; 
 

9. Its first derivative implies a probability map (as 
demonstrated in section 2.3);  
 

10. The reference and the classification are treated 
asymmetrically. Indeed, a different curve is obtained if the 
classification is taken as reference and vice-versa; 

 
 
2.2 Buffered Classification Indexes 

From the buffer curve such as designed in the previous section, 
two class specific indexes can be derived in order to assess its 
spatial validity: the Absolute Buffered Classification Index 
(ABCI) and the Relative Buffered Classification Index (RBCI). 
The ABCI, measures the overall spatial validity of the 
considered class taking into account how difficult it was to find 
r i features; the RBCI, evaluates the spatial validity of ci taking 
into consideration the best possible classification for the given 
reference. Before presenting how they are computed and their 
properties, it is worth noting that once computed for all classes, 
each index can be averaged in order to obtain the overall 
absolute and relative assessments for the spatial validity of the 
classification over all classes. However, the optimal averaging 
method to be applied it not discussed in this article. 
 
Absolute Buffered Classification Index (ABCI): has been 
designed to take into account how difficult it is to find a class. 
As the spatial pattern of a dominant class, covering per example 
90% of As, is easy to reproduce, the idea is that the ABCI for 
this class cannot reach high values. Basically, for such a 
predominant class, no classification can strongly outperform a 
random detection of it all over the territory. Conversely, the 
ABCI should reach values close to 1 only for good performing 
classifications over very small classes. In other words, the ABCI 
reaches 1 only when the needle is found in a haystack. This is 
achieved by the following formula: 
 
 

12 −∗ ii S=ABCI   (1) 

 
 
Where Si is the integral of the BC over [0-1] such as illustrated 
by the green zone in Figure 6. 
 
The total area of the buffer box equalling to one, the ABCI 
tends to 1 if and only if small classes perfectly reproduce the 
spatial pattern of the reference. In this case the blue and red 
curves tend to the edges of the buffer box. Indeed, from 
property 5, if a(ri) tends to 0 the blue line will go from (0,0) to 

(0,1) and then to (1,1) while from property 6 the red line will go 
from (0,0) to (1,0) and then to (1,1). Consequently, if ci 

corresponds to ri, the surface Si will tend to 1 as well as the 
ABCI i. Conversely, the ABCI will not substantially deviate 
from 0 for any classification trying to reproduce a dominant 
class. Using again properties 5 and 6 it is easy to see that the 
blue and red lines will tend to the diagonal of the box meaning 
that Si will take values close to 0.5 for any ci. Finally, note that 
the ABCI can only reach -1 for small classes that are detected 
everywhere but where they are, in other words if one takes all 
the hay for needles and the needle for hay. 
 
 

 
Figure 6. Surface used in to compute the ABCI. 

 
 

Relative Buffered Classification Index (RBCI): is a way of 
normalizing the ABCI. While the latter only attributes high 
values to classes that are difficult to be found, the Relative 
Buffered Classification Index is computed with respect to the 
feasibility domain of a given class. This is achieved by 
subtracting from the integral under the BC, the integral under 
the red curve (that corresponds to the worst possible spatial 
pattern) and dividing the result by the integral of the blue curve 
(best possible spatial pattern) minus the one of the red curve.  
 
 

 
Figure 7. Surface used in to compute the RBCI. 
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Again, in order to get an index bounded between -1 and 1 the 
result is multiplied by 2 and -1 is then added: 
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Where minSi = the integral below the red line 
 maxSi = the integral below the blue line 
 S’i = Si – minSi.  
 
As a result, the RBCI can reach any value between -1 and 1 for 
any r i. What matters here is only how close the spatial pattern of  
ci is to the one of r i. 
 
 
2.3 Probability Maps 

Another important advantage of the study of buffer curves (BC), 
maybe its most innovative one, is that probability maps can be 
generated for each assessed class. Indeed, the derivative of BC 
gives the increase of the proportion of r i covered by ci with 
respect to an increase of the proportion of As covered by ci 
when a buffer is applied to it: 
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Where BC’i,b = derivative of the buffer function of the class i  

corresponding the the buffer b 
 ci,b = objects of class i after application of the buffer b 
 
Then, if BC’ is multiplied by a(ri)/As, the probability of 
observing the assessed class i in the additional buffer b is 
obtained: 
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Formula 4 gives the proportion of the increase (decrease) of 
a(ci,b) that is covered by r i, or in another words, the probability 
that a random point within the marginal buffer has to hit an r i 
element. 
 
 

3. RESULTS 

The buffered classification analysis has been used to assess the 
spatial validity of the 5 simulations presented in the 
introduction. They are composed of a simple spatial pattern in 
the reference (square composed by the red and yellow pixels) 
that different classifications try to reproduce. This simple object 
has been chosen for simplicity reasons when exposing the 
spatial properties of the classifications. All classifications have 
been constructed in order to get the same kappa when compared 
to the reference. They are presented in Figure 8 with their 
respective buffer curve and probability maps for category 1 
(black dashed square being the reference).   
 

In classification A, a square of the correct size and shape is 
detected but is penalized by a positioning shift. Classification B 
is identical to A but with an additional shift of the cyan area 
corresponding to the commission error. The commission area 
being further from the object to be detected in classification B 
than in A, the latter is expected to spatially perform better than 
the former. In classifications C and D, the proportions of 
omission and commission errors with respect to the total area 
are identical to classifications A and B. However, C and D are 
expected to have a poorer performance since the general salt 
and pepper shape they detect is bigger than the object 
corresponding to the class. Finally, classification E correctly 
detects the square but with a high omission rate. As the 
proposed indicator is insensitive to area over/under estimations, 
and focus only on the spatial pattern of the classification, E is 
expected outperforms the other 4 classifications.  
 
By comparing the buffer curves for A and B, it can be seen that 
the false cyan detected object is having a negative impact on the 
slope for positive buffers and that the slope increases when the 
object merges with the correctly classified object. As expected, 
the RBCI is higher for classification A (0,91 against 0,89). 
Lower RBCI values are obtained for classifications C (0.86) and 
D (0.82) while its value is 0,99 for classification E. 
 
 

 
 
Figure 8. Spatially different classifications (cfr. Figure 1); Associated 
buffer curves and RBCIs; Probability maps for the assessed class 1 

(red+yellow in the reference). 
 
 
The derived probability maps show the uncertainties generated 
by errors on the spatial pattern of the classification. They can be 
decomposed on 3 areas: (i) red, where class 1 has a probability 
close to 1 of being found, (ii) blue, where class 1 has a 
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probability close to 0 of being found and (iii), uncertain areas. 
In classification E, only the first two areas are present. Indeed, 
despite high omission levels, category 1 detections (c1) are 
always correct and randomly distributed over the area actually 
covered by the category (r1). The same holds to the area 
obtained when small buffers are applied to c1; till the moment it 
will cover almost the whole r1 and only r1. From this point on, 
the BC derivative will tend to 0 and so will the probability of 
finding r1 components. Conversely, in classification A, negative 
buffers should be applied to c1 in order to have it fully covered 
by r1 and positive ones in order to fully cover r1. This transition 
between fully covered and fully covering is represented by a 
slope of the BC inferior to its theoretical maximum in the buffer 
square, and by the green area in the probability maps. For more 
negative buffers, the BC slope equals its theoretical maximum 
and the probability of finding category 1 becomes 1. For more 
positive ones, the slope and the same probability both equal 0. 
It is worth noting that here the probability maps have been 
generated only in the validation areas As, but the same buffer 
curves can be used over the whole classified zone A if the 
spatial validity of the classification is assumed to be 
homogeneous over space. 

 
 

4. CONCLUSION 

In this paper, we present a new framework for the quality 
assessment of classification products. Contrary to existing 
methods (e.g. Cohen’s kappa coefficient), the proposed 
methodology encompasses the spatial position of the classified 
objects relatively to the reference objects. 
The methodology relies on the spatial generalization of objects 
for a given map. For a given class, the corresponding objects are 
gradually increased (resp. decreased) until the whole area is 
covered (resp. empty). A percentage of agreement with the 
reference map is then computed as the ratio between (i) the 
surface of agreement with the reference map and (ii) the surface 
covered by the reference. It is then possible to show evolution 
of this percentage as a function of the percentage of the total 
area covered by the generalized objects. By construction, this 
function is increasing, continuous and remains in the 
[0,1]x[0,1] square. From this rather simple idea, one can bring a 
whole quality assessment framework with a set of well-defined 
properties. Mainly, as it is based on a spatial construction, it 
allows us to have a spatial representation of the quality 
assessment, e.g., probability maps. 
Although presented here for object-based classifications, it is 
worth noting that the methodology can also be adapted to pixel-
based classifications. 
 

REFERENCES 

Albrecht, F., Lang, S., Holbling, D., 2010. Spatial Accuracy 
Assessment of Object Boundaries for Object-Based Image 
Analysis. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 
Vol.XXXVIII, 4/C7. 
Brennan, R., Prediger, D., 1981. Coefficient kappa: Some uses, 
misuses and alternatives. Educational and Psychological 
Measurement, 41(3), pp. 687-699. 
Cohen, J., 1960. A coefficient of agreement for nominal scales. 
Educational and Psychological Measurement, 20, pp. 37-46. 
Congalton, R.G., Mead, R.A., 1983. A quantitative Method to 
Test for Consistency and Correctness in Photointerpretation. 
Photogrammetric Engineering and Remote Sensing, 49(1), pp. 
96-74. 

Desclée, B., Bogaert, P., Defourny, P., 2006. Forest change 
detection by statistical objecct-based method. Remote Sensing 
of Environment, 102(1-2), pp. 1-11. 
Pontius, R., 2000. Quantification error versus location error in 
comparison of categorical maps. Photogrammetric Engineering 
and Remote Sensing, 66(8), pp. 1011-1016. 
Radoux, J., Bogaert, P., Fasbender, D., Defourny, P., 2010, 
Thematic accuracy assessment of geographic object-based 
image classification. International Journal of Geographical 
Information science, 25(6), pp. 895-911.  
Thoonen, G., Hufkens, K., Vanden Borre, J., Spanhove, T., 
Scheunders, P., 2012. Accuracy assessment of contextual 
classification results for vegetation mapping. International 
Journal of Applied Earth Observation and Geoinformation, 
15(2012), 7-15. 

607


