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ABSTRACT: Meaningful accuracy assessment &ree qua norcondition for the use of increasingly precise awmdilable thematic
maps. Despite several caveats raised in the literathe kappa coefficient is still extensively diss an accuracy assessment tool.
However, it fails to take into account the spatiature of remote sensing data, penalizes agreeomeatea estimation and relies
upon hypotheses that are explicitly violated byssification methods such as Geographic Object-Basade Analysis. Based on
the fact that area estimation accuracy measureisdrivial, an innovative and comprehensive framgwimcusing on the spatial
accuracy of categorical maps is built and discussetlis paper. The framework considers not onlgraps between the reference
and the classification but also spatial vicinitydatoes not rely on hypotheses that are in contiiedievith the assessment of spatial
data. Two class-specific indicators are then desigand the ability of generating probability mapglained. The theoretical

developments are followed by simulations illustrgtspecific cases.

1. INTRODUCTION

In the last decades, remote sensing data gavéoriaelethora
of methods for the production of thematic mapsgeaareas are
now covered with an unprecedented spatial detaith& same
time, there is a constant need for accuracy assegsmf the
outcomes from automated classifications.

The mainstream validation technique for categonnaps was
and still is the kappa coefficient. Initially proged by Cohen

application of most classification. Moreover, aliigh the
kappa's sensitivity to area estimation hinges ds ttefinition

of chance agreement, it is worth noting that thdein is
negatively - and not positively - related with héghragreement
on estimated areas. This can be checked by derikimdappa
with respect tq. (the proportion of units for which agreement
is expected by chance); and holding conspgr{the proportion
of units in which the judges agreed). Bsis a proportion thus
smaller or equal to 1, equation 1 shows that tipp&alecreases
with increases om,. Now, asp. is the sum of the reference’s

(1960) as a measure of diagnostic agreement betweemhd classification’s marginal products, it increatiee higher is

psychologists, this measure has been widely acdeptel
adopted by the GIS and remote sensing communibr &
introduction by Congalton and Mead (1983). The idgedo
build a confusion matrix summarizing the agreenmenérms of
spatial overlap (or common categorisation) betwaeeeference
dataset, and the thematic map to be assessed.

The reasons for the success of the kappa coeffieien four-
fold: (i) when computing the proportion of agreemeit
removes from consideration chance agreement, dietednby
the marginal distributions of the reference anddhssification,
(ii) it is sensitive to both position agreementddap) and area
estimation, (iii) it varies over a convenient rarggeng from -1
to 1 and (iv) it has a correlation-like value iqestation where
0 corresponds to the random case, 1 to a perfeeemgnt and
-1 to a perfect disagreement (note that -1 is aeldi®nly in the
case of a reversed classification of 2 equiaresises).

Despite its appeal, caveats have been raised iditérature
with respect to kappa's (mis)use. In the field sfyghology,
Brennan and Prediger (1981) discussed the speaizfioition

of chance agreement that the index relies on: malgi
(frequency of each class) are assumed to be fixeshsposed to
the assessment of thematic maps, this means thatdportion
of each class is a predefined value (programméxkteeached)
rather than an output of the classification. Eviaeasonable in
some cases, this assumption significantly reducesstope of
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the agreement between the marginals which consdyues a
negative impact on the kappa. In other words, fogien
overlap area (unchanged sum of diagonal entriesthim
confusion matrix), the kappa will be maximized fhigher
discrepancies between the estimated area of thseda

-

Among the assumptions that Brennan and Predig&l{1&ate
as underlying to the computation of the kappa duefit, the
fact that the entries of the confusion matrix skholle
independent is explicitly violated by GeographicjéairBased
Image Analysis (GEOBIA) or any other classificatiorethod
that integrates contextual information. As pixelbdding
depends on its properties as well as the ones fism
neighbours, independency is not fulfilled. Finalllye fact that
the classification and the reference are treatethstrically is
an issue raised by Brennan and Prediger (1981) plestds
against the utilization of the kappa coefficientr fthe
assessment of thematic maps since the referermengdered
as the truth. Interestingly enough, the kappa efft has
firstly been used by the remote sensing commui@tyngalton
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and Mead, 1983) to test the consistency betwee
photointerpreters, not for accuracy assessment.

Understanding the previously mentioned properteepdrhaps
enough to discourage assessments of categoricat toape
based on the kappa coefficient. However, in thils$ief GIS
and remote sensing, the most important criticisrth&index is
that it neglects the very essential dimension ef data to be
evaluated, viz. space. In fact, the confusion mdigtween the
reference map and the assessed classification fooushe
respective proportions of each class and how thesrlap,
disregarding neighbouring pixels and object morpbgl
Figure 1 illustrates this problem by showing 5 sifisations
sharing the same kappa but with markedly differspétial
patterns.

Figure 1. Classifications with identical kappa ‘edubut different
spatial patterns. Category 1 is represented by yedtbw pixels

surrounded by a black dashed square in the referand by red+cyan
pixels in the classification. Agreement over classk and 2 is
respectively shown by red and dark blue areas whlew and cyan
highlight disagreements.

Pontius (2000), in an early attempt to remedy figblem,
proposed a method to decompose the agreement ia tmlu
chance”, “due to quantity” (over/under estimatidrttee areas)
and “due to location”. His idea is to use kapp&-ldoefficients,
adjusting the expected agreement proportions dabdoce and
the maximum possible agreement level given diffeedsilities
to correctly estimate the quantities of each clasd/or their
location. Notwithstanding its undeniable contribatito the
improvement of thematic map assessments, this mestit
relies on the hypothesis of independence of pixiglies
symmetry between the reference and the classiicand, with
respect to its scope to evaluate the spatial acguod the
classification, only considers overlaps. Only inl@Qwith the
development of the object fate analysis by Albreehtal.
(2010), has spatial vicinity been explicitly takato account by
applying buffers around the classification and thé&rence.
However, object fate analysis seeks to evaluaterteiaty of
object boundaries rather than the spatial validdl a
classification. With respect to the hypothesis rafependence
of the entries in the confusion matrix, the useljects instead
of pixels in the validation process has been predd®esclée,
2006; Radoux, 2010) but it only applies if there trematic but
not segmentation differences between the classditand the
reference.
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Conversely, this paper proposes a framework foatteysis of
the spatial accuracy of a classification and digtishes
classifications such as illustrated in Figurel.c8imgreement
on area estimates is a trivial computation, theopsed method
is insensitive to area estimation errors, and oquesetly makes
no assumption concerning the marginals. Insteapadtifically
focuses on the ability of the classification to romhce the
spatial pattern of the reference. The index is sclagecific,
which gives additional information about the asedss
classification, but can be aggregated in differemays.
Furthermore, the approach is not hindered by tearaption of
independence of the confusion matrix entries, ngkih
particularly suitable for the assessment of GEOBB&s is not
symmetric with respect to the reference and thesdiaation.
Last but not least, probability maps can be produmeer the
whole classification area.

2. METHODS
2.1 Theoretical Framework

The theoretical framework exposed here enableagshessment
of the spatial validity of a classificatiorC) over an areaA)
when compared to a referend®.(The reference is assumed to
be the truth and should fully cover a subset regibnthe
classified areaA9. C andR are assumed to be composechof
classes, all of them with strictly positive areagmAs The set
of objects from class within As will be notedc, andr; for the
classification and the reference respectively, avkiile function
a(.) will be used to get the surface of any set of cisje

As=1

Figure 2. Reference in blue, classification in gree

To start, consider the stylized example in Figure@esenting

a reference and a classification over the #&aWithout loss

of generality, let us assume thas=1 The class of interest
consists of a blue rectangle in the referengeand a green
square in the classificatioq;). The classification overestimates
the area of class with a(c)=0.5 versusa(r;)=0.25. Their
overlapping area(r;N¢) equals 0.1875 and corresponds to 75%
of a(r;)). Now, let us represent, in a bi-dimensional space
where the x-axis has the proportion Ad covered byc; while

the y-axis has the proportion afr;) covered byc;.. This point
(Cla) is represented in Figure 3 witla(g)/As=0.5 and
a(ring)/a(r;)=0.75. The reference is represented in the same
space Re) with a(r;)/As=0.25anda(r; \r;)/ a(r;)=1.

The distance between the two poin@a and Re)) is a first
quality indicator for the class of the classificationC: the
smaller it is and the better the classificationf@ens. This
distance can be decomposed into two effects: (8r/fomder
estimation of the class area, measured by thendisthetween



the projections of the points on the x-axis; ang the
proportion of the classthat C could not detect, measured by
the distance between the projections of the paintéhe y-axis.
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Figure 3. Representation of a reference and aifita®on.

Although useful, these quality indicators do notaswe the
spatial agreement between the structures afidr;. Indeed, the
decomposed transition fro@la to Refis made by (i) excluding
from ¢ only wrongly detected objects up to the paatt)=
a(r;) (x-axis transition) and (ii) by replacing the remag
wrong ones by correct detections in a spatial Sekeprocess
(y-axis transition); and consequently by changihg spatial
structure of;.

A way to avoid this spatial selection is to makg) vary
through a buffering process such as illustratedrigure 4. In
the image on the left, positive buffers (i.e. itiha) are
iteratively applied ta; elements untit; is fully contained by the
bufferedc;. In the image on the righa(g) is lessened up to the
point it equalsa(r;)) through negative buffering (i.e. deflation)
ongc. The so buffered; will be notedc;,. andc;y,..

Figure 4. Positive and negative buffering processéaft and right
images respectively- over. Positive buffers have been applied until
is contained irt;; negative buffers have been applied uatd)=a(r;).

The new sets of objectsy. andc,. can then be represented in
the previously used bi-dimensional space. In Fige
positively and negatively buffered are represented by the
remarkable point®, andP. respectively. Since . contains;,
the value ofP, on the y-axis reaches 1 while in the x-axis
appears the proportion @éfs covered byc .. In other words,
this point informs about how inflateg should be in order to
avoid omission errors in clagsThe better is; and the smaller
are the needed buffers, and consequently the higtiee slope

604

betweenCla andP,. ConverselyP. is the point in the curve for
whicha(Gp.)= a(rj).

A continuum of points can be marginally generatethe same
way for different sizes of negative and positivéféns, until the
bounds of the graph are reached. The lower boun@), (is
reached whert; totally fades away following the successive
application of negative buffers ara(c)=0; while the upper
bound, (1,1) is reached when positive buffers amied up to
the momentc, covers the whole validation area and;)aAs,
The result of this succession of points forms ddsdurve (BC)

in what we name the buffer box (green line in Feghy.
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Figure 5. Buffer box representing a reference aokssification.

A similar curve can be generated fowith respect to itself and
defines the best reachable classification (blue imFigure 5).
Contrariwise, the BC corresponding to the potelytiabrstc; is
obtained by the application of negative and positiuffers to
the complement of; over the validation area. It corresponds to
the red line in Figure 5 stylized case.

Buffer curves have the following properties for
classification and reference:

any

1. The curve passes through (0,0), when the applidfirsu
are negative enough and (1,1) when the bufferest dlaly

coversAs
It is increasing but not strictly increasing;

The case of a random classification correspondshé&
diagonal of the box (grey line on Figure 5). Aswedats of a
randomc; are randomly located within the validation area,
the proportion ofAs covered by them is expected to be the
same than the proportion pfthey cover. The same applies
after the application of buffers;

4. ltis insensitive to changes on the marginal cthsgibution
of C. Indeed, a change in the marginal that respects the
spatial structure of the clasmerely leads to a displacement
of Cla on the unchanged buffer curve. The same does not
apply for marginal changes oR since a(r;) would be
impacted and consequently the y-axis



5. The best possible spatial pattern ¢p(blue curve, built by
applying buffers om;), is defined by two straight lines: from
(0,0) to @(r;)/As 1) and then to (1,1);

6. The worst possible spatial pattern &fred curve, built by
applying buffers on the complementaryrgf is defined by
two straight lines: from (0,0) to (1a(r;)/As0) and then to
(1,1);

7. Its maximum slope over the domain equada(r;);

8. lts first derivative is sensitive to false and reidsbjects.
False objects tend to have a negative impact orslityee
while missed ones, when detected by positive bsiffemd
to increase it;

9. Its first derivative implies a probability map (as
demonstrated in section 2.3);

10.The reference and the classification are treated

asymmetrically. Indeed, a different curve is obedinf the
classification is taken as reference and vice-yersa

2.2 Buffered Classification Indexes

From the buffer curve such as designed in the pusvsection,
two class specific indexes can be derived in otdeassess its
spatial validity: the Absolute Buffered Classificat Index

(ABCI) and the Relative Buffered Classification éxd(RBCI).

The ABCI, measures the overall spatial validity tife

considered class taking into account how diffigulwas to find

r; features; the RBCI, evaluates the spatial validitg; taking

into consideration the best possible classificafmthe given

reference. Before presenting how they are compatettheir

properties, it is worth noting that once computeddil classes,
each index can be averaged in order to obtain trexat

absolute and relative assessments for the spatlidity of the

classification over all classes. However, the optiaveraging
method to be applied it not discussed in this lartic

Absolute Buffered Classification Index (ABCI): has been
designed to take into account how difficult it ésfind a class.
As the spatial pattern of a dominant class, cogeper example
90% ofAs, is easy to reproduce, the idea is that the ARCI f
this class cannot reach high values. Basically, such a
predominant class, no classification can strongitperform a
random detection of it all over the territory. Cersely, the
ABCI should reach values close to 1 only for goedfgrming
classifications over very small classes. In otherds, the ABCI
reaches 1 only when the needle is found in a helysthis is
achieved by the following formula:

ABCI, = 2[0S -1 1)

Where§ is the integral of the BC over [0-1] such as iiiated
by the green zone in Figure 6.

The total area of the buffer box equalling to oties ABCI
tends to 1 if and only if small classes perfecdproduce the
spatial pattern of the reference. In this casebiue and red
curves tend to the edges of the buffer box. Indeeoin
property 5, ifa(r;) tends to 0 the blue line will go from (0,0) to
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(0,1) and then to (1,1) while from property 6 tkd line will go
from (0,0) to (1,0) and then to (1,1). Consequentifyc
corresponds ta;, the surface§ will tend to 1 as well as the
ABCI;. Conversely, the ABCI will not substantially detea
from O for any classification trying to reproducedaminant
class. Using again properties 5 and 6 it is easyetthat the
blue and red lines will tend to the diagonal of box meaning
that S will take values close to 0.5 for asy Finally, note that
the ABCI can only reach -1 for small classes thatdetected
everywhere but where they are, in other words & takes all
the hay for needles and the needle for hay.
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Figure 6. Surface used in to compute the ABCI.

Relative Buffered Classification Index (RBCI): is a way of
normalizing the ABCI. While the latter only attrites high
values to classes that are difficult to be fourfte Relative
Buffered Classification Index is computed with respto the
feasibility domain of a given class. This is acle@vby
subtracting from the integral under the BC, thegnal under
the red curve (that corresponds to the worst plesspatial
pattern) and dividing the result by the integratred blue curve
(best possible spatial pattern) minus the oneeféld curve.
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Figure 7. Surface used in to compute the RBCI.



Again, in order to get an index bounded betweeand 1 the
result is multiplied by 2 and -1 is then added:

2rs,

—— )
(max$ -ming)

RBC|, =

Where min§ = the integral below the red line
max$ = the integral below the blue line
Si=S -minS.

As a result, the RBCI can reach any value betwé&eand 1 for
anyr;. What matters here is only how close the spatittepn of
G is to the one of;.

2.3 Probability Maps

Another important advantage of the study of buffeves (BC),
maybe its most innovative one, is that probabititgps can be
generated for each assessed class. Indeed, thatderiof BC
gives the increase of the proportion mpfcovered byc; with
respect to an increase of the proportionAsfcovered byc
when a buffer is appliet it:

_oa(rNc)/a(r) - da(r,Nc.,) « As

BC' ,= ®3)
i da(c;,)/ As da(c;,) a(r)

Where BC';, = derivative of the buffer function of the cldss
corresponding the the buffbr
Cip = objects of claskafter application of the buffér

Then, if BC' is multiplied by a(r)/As the probability of
observing the assessed clasin the additional bufferb is
obtained:

a(ri)_ aa(ri ﬂ ci,b)
As da(c;,)

BC',,O (4)

= Pr,,

Formula 4 gives the proportion of the increase r@kse) of
a(Gp) that is covered by, or in another words, the probability
that a random point within the marginal buffer hashit anr;
element.

3. RESULTS

The buffered classification analysis has been tsebsess the
spatial validity of the 5 simulations presented the
introduction. They are composed of a simple spgitern in
the reference (square composed by the red andwyglicels)
that different classifications try to reproduceisTéimple object
has been chosen for simplicity reasons when exgotie
spatial properties of the classifications. All clifisations have
been constructed in order to get the same kappa edm@pared
to the reference. They are presented in Figure t& wieir
respective buffer curve and probability maps fotegary 1
(black dashed square being the reference).

606

In classification A, a square of the correct singl &hape is
detected but is penalized by a positioning shifas€ification B
is identical to A but with an additional shift die cyan area
corresponding to the commission error. The commissirea
being further from the object to be detected irssification B
than in A, the latter is expected to spatially perf better than
the former. In classifications C and D, the propoms of
omission and commission errors with respect totthal area
are identical to classifications A and B. Howew@rand D are
expected to have a poorer performance since therglegsalt
and pepper shape they detect is bigger than thectbbj
corresponding to the class. Finally, classificati®ncorrectly
detects the square but with a high omission rats. tihe
proposed indicator is insensitive to area over/ugdémations,
and focus only on the spatial pattern of the clesdion, E is
expected outperforms the other 4 classifications.

By comparing the buffer curves for A and B, it damseen that
the false cyan detected object is having a negatipact on the
slope for positive buffers and that the slope iases when the
object merges with the correctly classified objéat.expected,
the RBCI is higher for classification A (0,91 agstir0,89).

Lower RBCI values are obtained for classificati@hg.86) and
D (0.82) while its value is 0,99 for classificati&n

Simulations

i Buffer squares

Probability maps
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Figure 8. Spatially different classifications (dfigure 1); Associated
buffer curves and RBCIs; Probability maps for theessed class 1
(red+yellow in the reference).

The derived probability maps show the uncertaingeserated
by errors on the spatial pattern of the classificatThey can be
decomposed on 3 areas: (i) red, where class 1 pesbability

close to 1 of being found, (i) blue, where classhds a



probability close to 0 of being found and (iii),agntain areas.
In classification E, only the first two areas aregent. Indeed,
despite high omission levels, category 1 detectifmy are
always correct and randomly distributed over thenaactually
covered by the categoryi]. The same holds to the area
obtained when small buffers are appliectfotill the moment it
will cover almost the whole; and onlyr,. From this point on,
the BC derivative will tend to 0 and so will theopability of
finding r, components. Conversely, in classification A, nizgat
buffers should be applied tg in order to have it fully covered
by r,; and positive ones in order to fully cover This transition
between fully covered and fully covering is represe by a
slope of the BC inferior to its theoretical maximimthe buffer
square, and by the green area in the probabilifysmiaor more
negative buffers, the BC slope equals its theaktitaximum
and the probability of finding category 1 becomes$-dr more
positive ones, the slope and the same probabititih bqual 0.
It is worth noting that here the probability mapavé been
generated only in the validation areas As, butdieme buffer
curves can be used over the whole classified zonié the
spatial validity of the classification is assumed be
homogeneous over space.

4. CONCLUSION

In this paper, we present a new framework for thelity
assessment of classification products. Contraryexasting
methods (e.g. Cohen’s kappa coefficient), the psedo
methodology encompasses the spatial position otlesified
objects relatively to the reference objects.

The methodology relies on the spatial generalinatibobjects
for a given map. For a given class, the correspandbjects are
gradually increased (resp. decreased) until theleviacea is
covered (resp. empty). A percentage of agreemettt thie
reference map is then computed as the ratio beti¢ethe
surface of agreement with the reference map ajpthéisurface
covered by the reference. It is then possible toaskvolution
of this percentage as a function of the percentigihe total
area covered by the generalized objects. By cortgiry this
function is increasing, continuous and remains ime t
[0,1]x[0,1] square. From this rather simple ideae @an bring a
whole quality assessment framework with a set df-elefined
properties. Mainly, as it is based on a spatialstmction, it
allows us to have a spatial representation of thelity
assessment, e.g., probability maps.

Although presented here for object-based classifies, it is
worth noting that the methodology can also be axthfi pixel-
based classifications.
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