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ABSTRACT: 

 

Floodplains are crucial ecosystems regarding their function as carbon sinks. In comparison to other terrestrial ecosystems, riparian 

forests, even in temperate climates, have a considerably high storage capacity for organic carbon (Corg). Despite the importance of 

floodplains for carbon sequestration, the scientific basis for the creation of large-scale maps that show the spatial distribution of Corg 

is still insufficient. The idea of this research is to develop a method to model the allocation of Corg stocks using remote sensing and 

other geographic data. The research area is the Danube Floodplain National Park in Austria. It is a large pristine riparian habitat, one 

of very few left in central Europe. A wide variety of data was available including two very high spatial resolution (VHSR) satellite 

images such as Ikonos and RapidEye, historic and actual topographic maps, and various vegetation and soil parameters. In 

combination with the other data available, data mining can provide a powerful tool to improve the classification process and to 

determine the importance of single geofactors. So far various OBIAs of an Ikonos scene and additional data were performed to 

classify vegetation types. In this study, the machine learning algorithm for classification and regression trees (CART) of eCognition 

8.7 is under investigation.  

The eCognition CART classifier extracted all continuous information from the various satellite images including mean layer values, 

indices, texture and combined it with geographic parameters such as height, slope, existence of river beds, distance to river and 

ground water level. We evaluated three different parameter combinations. The results show the complexity of the intricate network of 

side channels, small islands and the multifariousness of the interactions within a small-scale model of Corg such as the Danube 

floodplain. With an increased number of parameters the classification accuracy increases, but it is still considered moderate. 

Results of the modeling process shall contribute to the prediction and assessment of Corg for floodplain areas in tropical and 

subtropical zones, which play a more prominent and important role in the global carbon cycle.  
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1. INTRODUCTION 

1.1 Estimation of carbon stocks in floodplains 

Floodplains are crucial ecosystems not only as hotspots of 

vitality and biodiversity, but also regarding their function as 

carbon sinks. In comparison to other terrestrial ecosystems, 

riparian forests, even in temperate climates, have a considerably 

high storage capacity for organic carbon (Corg). Despite the 

importance of floodplains for carbon sequestration, the 

scientific basis for the creation of large-scale maps that show 

the spatial distribution of Corg is still insufficient. Although 

carbon distribution can be mapped on global or national level, 

but with insufficient regional validation (Gibbs and et al. 2007; 

Groombridge and Jenkins 2002; UNEP-WCMC 2008). Yet, 

there are no large-scale maps showing the actual allocation of 

the Corg storage inside riparian soils and vegetation on local or 

regional level. Various studies have their focus on Corg stocks in 

alluvial soils (Busse and Gunkel 2002; Giese et al. 2000; 

Hazlett et al. 2005) or subtropical wetlands (Matsui et al. 2009; 

Mitsch et al. 2010) and soils (Grimm et al. 2008). Cierjacks et 

al. (2011) have provided statistical models on the spatial 

distribution of Corg stocks in Danubian floodplain vegetation 

and soils. However, these studies were exclusively field-based. 

Data have been collected by cost-intensive ground surveys. In 

order to assist and fasten the estimation of Corg, even for larger 

or less accessible wetland and riparian areas, methods of remote 

sensing and the use of geoinformation systems (GIS) are 

valuable techniques. 

Several studies have used remote sensing in general (Farid et al. 

2008; Munyati 2000; Ozesmi and Bauer 2002) and object-based 

image analysis (OBIA) for the analysis of wetlands (Kollár et al. 

2011; Rokitnicki-Wojcik et al. 2011; Wagner 2009). However 

these studies were more related to habitats and did not focus on 

the assessment of biomass or Corg. 

The remote sensing analysis of Corg stocks in various habitats 

was described by various authors (Awaya et al. 2004; Behrens 

and Scholten 2006; Hilker et al. 2008; McBratney et al. 2003; 

Neeff et al. 2005; Olofsson et al. 2008). Most of these studies 

have focused either on Corg stocks in soil or vegetation, there is 

no comprehensive approach so far.  

Besides pure remote sensing also the combined use of remote 

sensing and additional geodata has been described by some 

studies (Gibbs and et al. 2007; Goetz et al. 2009). Examples for 

those data mining methods include Self-Organized Maps 

(SOM), Random Forest estimations or approaches with 

commercial software applied to rewetted peat lands (Frick et al. 

2011) as well as farmland in Montana (Bricklemyer et al. 2007). 

Applying the theoretical knowledge to our research in the  

Danubian Floodplains, various approaches were done to 

estimate the amount of above and below ground Corg. 

A first approach to determine the Corg content by VHSR and 

DEM data through OBIA and a Monte-Carlo simulation has 
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been performed (Suchenwirth et al. 2012). As an advantage, this 

method could create a spatial distribution map of Corg. 

However, this estimation was based on the specific Corg content 

of the classified vegetation types and did not consider other 

geofactors. 

A second approach was to identify parameters with a 

punctiform data mining approach based on the software package 

See5. This approach considers all available data that might have 

an impact on the amount of Corg and determines their 

importance. The advantage of this method was that a wide 

variety of available geodata could be analysed and taken into 

consideration in order to improve the model. However, the 

results of these methods still had deficits regarding the accuracy 

and included information which is not generally available as 

continuous information, i.e. as raster data.   

Therefore the research idea of this study is to develop a method 

to model the allocation of Corg stocks using remote sensing and 

other spatially continuous, i.e. area-wide, available geodata.   

 

1.2 Data Mining 

Methods of data mining and knowledge discovery in databases 

(Fayyad et al. 1996) have been frequently applied in the recent 

years, also due to the increasing number of available geofactors 

(Qi and Zhu 2003) and indices based on remote sensing (Yang 

et al. 2007; Moisen et al. 2006; Quintano et al. 2011). A large 

variety of geodata requires a tool to understand the individual 

relevance of each factor and to carefully select the parameters 

that have an increased significance for the modeling process.  

Given the complexity of spatial distribution of Corg in the 

Danube floodplains (Cierjacks et al. 2010; Cierjacks et al. 2011; 

Suchenwirth et al. 2012) on the one hand, the amount, variety 

and consistency of data on the other hand, a tool defining the 

importance of the single geofactors is necessary. Data mining is 

described as a 'non-trivial process of identifying valid, novel, 

potentially useful, and ultimately understandable' patterns in 

data (Fayyad et al. 1996). Often, these patterns concern the 

categories to which a situation belongs, e.g. if a process will 

give a high, medium or low yield on a batch of raw material. 

Data mining can be regarded as one step in the process of 

knowledge discovery in databases (KDD)(Fayyad et al. 1996).  

Kaichang et al. (2000) have been using data mining methods for 

the classification of Landsat data, while Stümer et al. (2010) 

have assessed Corg in forests by Self-Organized Maps (SOM) 

and Frick et al. (2011) and Bricklemeyer et al. (2007) used the 

commercial software See5 for their estimations of Corg. 

 

2. METHODS 

2.1 Research Area 

The research area has a size of about 11.3 km² and is situated in 

the Danube Floodplain National Park in Austria (16.66° E, 

48.14°N). The National Park is located between the Austrian 

capital Vienna and the Slovak capital Bratislava, and stretches 

along the river Danube for about 36 km. The river has an 

average width of about 350 meters, and is not barred. There 

have been few human impacts onto the area apart from the 

construction of the Marchfeld dike in the 19th century to 

protects areas on the northern riverbank from inundation and to 

ease navigation on the river. Throughout history, the area 

served as imperial hunting ground. In the 1960ies, forest 

structures were altered through the plantation of hybrid poplars 

(populus x canadensis), especially on the southern riverbank. In 

1996 the area was declared a national park, thus banning any 

commercial enterprise within its precincts. Despite the previous 

human interventions, the area has remained one of the last large 

pristine riparian habitats left in Central Europe, recognized by 

the IUCN as a Riverine Wetlands National Park, category II. 

The National Park's environmental conditions include the 

Danube river's water body, side channels and oxbow lakes, 

gravel banks, riparian forests and meadows, reed beds and xeric 

habitats. The main soil type is haplic fluvisoil (calcaric),   

calcaric gleysols are less important; the climate is continental 

with a mean annual temperature of 9.8°C and mean annual 

precipitation of 533 mm [Schwechat climate station, 48°07'N, 

16°34'E, 184 meters above sea level (ZAMG 2002)].  

The area was selected for its high-ranking protection status, a 

good base of geographic data and the high number of studies in 

the area (Cierjacks et al. 2010; Cierjacks et al. 2011; Ellenberg 

1986; Lair et al. 2009; Suchenwirth et al. 2012; Wagner 2009; 

Zehetner et al. 2009). 

  

2.2 Data 

A wide variety of data was available including two very high 

spatial resolution (VHSR) satellite images such as Ikonos and 

RapidEye, historic and actual topographic maps, digital 

elevation model and data on the medium groundwater level. 

A cloudless Ikonos 2-image (22nd of April 2009) was 

purchased as well as a satellite image scene of the area derives 

from the sensor RapidEye (recorded on August 1st 2009). In 

addition to the spectral values several ratios and texture 

parameters (Haralick et al. 1973) were calculated (Table 1). A 

digital elevation model (DEM) derived from LiDAR data has 

been used to compute height and slope. Increased slope values 

can indicate historic riverbeds of the main stream or overgrown 

side channels (as an indicator for softwood), which cannot be 

detected directly through spectral values. Also the height above 

ground (sea level) has been included into the knowledge-base.  

 

Available geodata Derived Parameters Abbreviation 

Ikonos image  

(April 22 -2009) 

Rapideye  image 

(August 1-2009) 

Spectral values, indices 

(Ikonos: NDVI, 

vegetation classification; 

RapidEye: NDVI, 

tNDVI, modNDVI, 

b4NDVI, SRI,[b2-b1], 

[b3-b1], [b3-b2], [b5-

b4], [b5-b4], [b3/b1], 

[b4/b2],[b5/b2]), texture 

(GLCM homogeneity, 

GLCM mean, GLCM 

correlation, GLCM 

contrast, GLDV entropy) 

Ikonblu, 

Ikongrn, 

Ikonred, 

Ikonnir, 

ikonndvi;  

Classification; 

b1, b2, b3, b4, 

b5; b2mb1, 

b3mb1, b3mb2, 

b5mb4, b3db1, 

b4db2, b5db2; 

   

Digital Elevation 

Model 

Height, slope DEM, slope 

Historical 

(military mapping 

surveys) and 

actual topographic 

maps 

Existence of river beds, 

distance to river 

hist1, hist 2, hist 

3; dist 

Ground water 

model 

Ground water level MGW 

Ground survey 

data  from 2008 

and 2010 

Corg  contents and stocks  

    

 

Table 1.  Available geodata and derived parameters 
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Vegetation types had been classified by OBIA of the Ikonos 

image and the slope model (Suchenwirth et al. 2012). 
The historic and also actual topographic maps were provided by 

the Austrian Federal Office for Metrology and Survey (BEV). 

The historic maps range from three topographic land surveys, 

the First (1764 to 1806), Second (1806 to 1869) and Third 

Military Mapping Survey (1868-1880). The information can be 

used to localize historic riverbeds. A ground water model with 

heights of medium and low ground water was provided by the 

Vienna University of Technology. 
In two terrestrial surveys in 2008 and 2010, a total of 104 

samples from vegetation and soil were taken. Corg content of 

soil and vegetation have been measured and calculated 

(Cierjacks et al. 2010; Cierjacks et al. 2011); these data were 

randomly separated in training data (70%) and test data (30%) 

for the data mining process.  

 

2.3 Method 

The idea of this study is to develop a spatial model based on a 

combined approach of data mining and OBIA with remote 

sensing and other spatially continuous geodata for the 

estimation of Corg stocks in soils and vegetation. For the 

implementation in this study, we used the commercial software 

package eCognition Developer 8.7.1. In this new approach, 

OBIA shall be attached to data mining.  

The ground survey data set containing the information on the 

total Corg stocks in vegetation and soils (to the depth of 1 meter) 

was grouped into 5 quintile classes (Class 1: up to 230 Mg C 

ha-1; class 2: 231-300 Mg C ha-1; class 3: 301-360 Mg C ha-1; 

class 4: 361-445 Mg C ha-1; class 5: more than 445 Mg C ha-1). 

A CART creates classification rules in the shape of a decision 

tree. Decision trees show hierarchical rules according to which 

a dataset is classified. At the beginning of a decision tree is the 

basic population of the data; during the classification process, 

the dataset is split up according to binary rules (Quinlan 1986; 

Breiman et al. 1984). To prepare the decision tree, the 

parameters are distilled out of the datasets. During the data 

mining process, the program searches appropriate mechanisms 

for the partition of the dataset.  

The OBIA was performed on a multiresolution segmentation 

with a scale parameter of 200, the homogeneity criterion 

includes a shape of 0.1 and a compactness of 0.5. The CART 

algorithm is trained with the quintile classes and applied onto 

the parameters using the 'classifier' tool in eCognition 8.7.1, 

with a classifier depth of 10, a minimum sample count of 6 and 

9 cross validation folds. 

To evaluate the classification accuracy, the user's accuracy (UA, 

also known as commission error), producer's accuracy (PA, also 

known as omission error), and the overall accuracy (OA) were 

calculated as well as the Kappa (K) and the Kappa Overall 

(KIA) statistics. The Kappa coefficient serves as an additional 

measure of agreement between the classes represented in the 

classified image and on the ground. The measure describes 

which level of agreement is due to chance; a K value of 1 

describes a very high classification accuracy, a K value of 0 a 

very low accuracy.   

 

3. RESULTS 

Three different results from the CART processes were 

compared. Figures 1-3 and Tables 2-4 show CART-based 

models of Corg stocks and their accuracy assessment. The CART 

models are based on the use of 

a) spectral values of a RapidEye sensor (Figure 1, Table 2),  

b) spectral values and NDVI of RapidEye and Ikonos sensors 

and values from the digital elevation model, slope, and medium 

ground water level (Figure 2, Table 3), and 

c) all available parameters (Table 1):  Figure 3 and Table 4. 

The models created by the CART classifier show the complexity 

of data models. With an increasing number of parameters also 

the number of parameters actually implemented in the 

classification rises.  

The accuracy results of the CART-based classifier are slight to 

moderate (Congalton 1991). The overall accuracy (OA) ranges 

from 0.115 (a), Table 2) to 0.196 (b), Table 3) to 0.432 (c), 

Table 4), the Kappa Overall statistics (KIA) from -0.043 (a), 

Table 2) to 0.033 (b), Table 3) to 0.283 (c), Table 4). 

 

 
Figure 1.  Corg model based on RapidEye spectral bands (a)  

 

Quintile class 1 2 3 4 5 

Producer's Accuracy 0.158 0.167 0.001 0.115 0.080 

User Accuracy 0.431 0.188 0.003 0.181 0.008 

KIA per class 0.080 -0.101 -0.063 -0.062 -0.321 

Overall Accuracy 0.115 

KIA -0.043 

 

Table 2. Accuracy Assessment of Corg - Classification based on 

RapidEye spectral bands (a) 
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Figure 2.  Corg model based on spectral values and NDVI of 

RapidEye and Ikonos sensors and values from the digital 

elevation model, slope, and medium ground water level (b) 

 

 

Quintile class 1 2 3 4 5 

Producer's Accuracy 0.149 0.133 0.158 0.336 0.080 

User Accuracy 0.420 0.185 0.238 0.387 0.008 

KIA Per Class 0.070 -0.085 0.024 0.134 -0.321 

Overall Accuracy 0.196 

KIA 0.033 

 

Table 3.  Accuracy Assessment of Corg - Classification based on 

spectral values and NDVI of RapidEye and Ikonos sensors and 

values from the digital elevation model, slope, and medium 

ground water level (b) 

 

 

Quintile class 1 2 3 4 5 

Producer's Accuracy 0.313 0.161 0.632 0.667 0.058 

User Accuracy 0.536 0.419 0.450 0.585 0.008 

KIA Per Class 0.204 0.063 0.485 0.513 -0.026 

Overall Accuracy 0.432 

KIA 0.283 

 

Table 4.  Accuracy Assessment of Corg - Classification based on 

all available parameters (c) 

 

 
Figure 3.  Corg model based on all available parameters (c) 
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4. DISCUSSION AND CONCLUSION 

The work shows a complex model of Corg stocks in floodplains 

that includes a wide variety of data. The more parameters 

offered to the CART process, the more parameters are actually 

used. For the remote sensing channels and indices, the near 

infrared and red edge channels and derived indices are of 

increased relevance for the classification. This was also shown 

in a study by Schuster et al. (2012). 

Regarding the accuracy of the single quintile classes, there are 

obvious confusions between the classes. The fifth quintile class 

has the lowest accuracies, with UA ranging from 0.01 to 0.08, 

and PA ranging from 0.058 to 0.080. For the other classes, UAs 

are higher (up to 0.585, quintile class 4, Table 4) as well as PAs 

are higher (up to 0.667, quintile class 4, Table 4). 

With an increasing number of parameters, the OA of the 

classification rises, yet the accuracy is still moderate (Congalton 

1991) even though considering a full range of area-wide 

available features (Table 4). It is evident that an increasing 

number of parameters included in the CART improves the 

classification results. The CART is dependent on the amount 

and quality of the input data. However, further research on the 

Corg model will be necessary. Approaches of kNN or SOM 

(Stümer et al. 2010) may be taken into consideration. 

The work can also be an important contribution to support a 

European biomass inventory (Gallaun et al. 2010) or to provide 

information on global carbon stocks. Results of the modeling 

process may also contribute to the prediction and assessment of 

Corg for floodplain areas in tropical and subtropical zones, 

which play a more prominent and important role in the global 

carbon cycle.  
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