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ABSTRACT:

Recently, a lot of classification methods within GIS applications rely on object-based image analysis. The image is partitioned by a low-
level segmentation method, and classification is processed on each segment individually. Often, the resulting homogeneous segments
do not allow for a correct classification. Hence, a semantic processing considering neighbouring segments is needed to correctly
classify the segments. Therefore, we use a pixel-wise classification in different scales which ensures independent consideration of
context beyond segment boundaries. However, local context introduces a smoothing to the classification process and is restricted to a
small local neighbourhood. To reduce smoothing effects and keep spatial coherence, we propose a method that incorporates a mean
shift segmentation on the input image with tendency towards over-segmentation. Each unique segment is analysed for enclosed classes
from pixel-wise classification. A weighted majority vote decides for the resulting class which is assigned to the whole segment. Our
experiments show that the refinement improves the classification results in all test sets. An average improvement of 4.51 % is achieved
with improvements from 66.75. % to 71.40 % and 81.58 % to 83.97 %. This includes a better representation of image edges, since
high frequency contours are restored. We also show that small context size adds noise to classification results which is shown to be
significantly reduced by our approach.

1 INTRODUCTION plications are limited to certain scenarios or a priori knowledge.
In (Liu et al., 2010) classification is limited to urban areas, which
show many homogeneous rooftops. The texture-based classifica-
tion of the segments leads to low-level classes like ’grey roof” and
’white roof’, only. If a more general representation is targeted,
a semantic (post-)processing considering neighbouring segments
is needed. (Yang and Forstner, 2011) present such a system in
a well defined scenario for building facade classification. They
employ a hierarchical segmentation where context and semantics
are jointly incorporated by a Conditional Random Field model.
(Moser and Serpico, 2009) focus on urban areas in satellite im-
agery. A Canny edge map is integrated to their Markov Random
Field classification in order to preserve edges.

In this paper, we propose a method that employs high-level pixel-
wise classification and low-level segmentation in parallel. A pixel-
wise SVM classification ensures context consideration beyond seg-
ment borders in different scale levels. To compensate lowered
accuracy due to smoothing from larger context, the classification
result is refined utilising a discontinuity preserving segmentation
like mean shift, which is applied on the input image data. For
each of its segments, the dominant class label is determined and
applied to all enclosed pixels. Hence, edges are preserved while
keeping spatial coherence.

The next section first explains the base system for SVM classi-
fication and feature extraction. Followed by a description of the
mean shift segmentation, the section concludes with the proposed
joining scheme based on weighted majority voting. Finally, ex-
perimental results are discussed, which show the benefit of the
proposed refinement.

Today, the increasing amount of image data originating from sen-
sors like satellites is employed for several applications in GIS
systems. Evaluation, however, often demands more manpower
than available. Hence, (semi-)automatic systems based on com-
puter vision and machine learning algorithms are of great interest
with respect to these applications (Forstner, 2009). With regard to
this, methods involving pixel-wise and object-wise classification
as well as segmentation are proposed for land cover classification
(Weis et al., 2005),(Helmholz et al., 2010), (Vogt et al., 2010). A
comprehensive review of (Mountrakis et al., 2011) shows that a
lot of research has been done in the area of support vector ma-
chine classification (SVM),(Vapnik, 1998), recently.

However, simultaneous classification of diverse homogeneous re-
gions like grassland, fine grained textures such as forests, and
large structures like those in industrial areas still challenge mod-
ern methods. Due to highly varying scales, the extent of local
context for feature extraction is crucial. Since large structures
require a large context while smaller context improves accuracy
and classification of smaller structures, parameter selection is a
good compromise at most. Context in high-dimensional feature
space accounts for good classification results, while losing spatial
coherence. On the other hand, low-level segmentation methods
like mean shift segmentation (Comaniciu et al., 2002) preserve
discontinuities (i.e. edges) and spatial coherence, while lacking
textural information for classification without a priori knowledge.
In recent literature, these opposing properties are approached in
two steps. The image is partitioned by a low-level segmentation
method. Then, each segment is classified individually by a high-
level classification method. (Lin, 2008) states that mean shift 2 EDGE-PRESERVING CLASSIFICATION
segmentation is generally well suited for classification of land REFINEMENT

cover data, but he does not deal with the crucial aspect of clas-

sification in detail. Since segments from low-level segmentation The system for edge-preserving classification refinement as pro-
do not exhibit a lot of textural information in most cases, ap- posed in this paper consist of three parts, which are shown in
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Figure 1. To keep coherence in feature space as well as spa-
tial coherence, a pixel-wise SVM classification and a mean shift
segmentation are parallelly computed on the input image bands.
Both results are joined by a weighted majority vote. In the follow-
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Figure 1: Proposed system for edge preserving classification re-
finement. Results from pixel-wise classification and mean shift
segmentation are joined by a weighted majority voting.

ing subsections, we will first describe the pixel-wise classification
followed by the mean shift segmentation. The section concludes
with the final joining of results from both approaches.

2.1 Pixel-wise Classification

Our base system is a flexible framework for classification of satel-
lite imagery. It consists of two main modules, the feature extrac-
tion and the SVM classification. The feature extraction pipeline is
depicted in Figure 2. Aiming for a pixel-wise classification im-
plies features to be extracted for each pixel location. Hence, for
an arbitrary number of image bands, local features are extracted
within an N X NN neighbourhood.

Due to widely varying structure sizes, it is indispensable to

incorporate the according local context information of likewise
varying size. This is done by considering different scales, which
is a well known technique that is approached in several differ-
ent ways. Depending on the application, the neighbourhood’s
size can be increased, different bands in frequency domain can
be analysed (as done with SIFT features (Lowe, 1999)) or resolu-
tion pyramids are build. We use a low-pass cascade of Gaussian
filters which leads to a less complex model than solely increas-
ing neighbourhood size of feature extraction. (Lindeberg, 1994)
comprehensively evaluates scale-space, proving Gaussian filter
kernels to be best suited in the general case. Although resolution
pyramids are well suited for efficient calculation of scale invari-
ant features, we do not sub-sample lower scales. The reason are
inaccuracies of lower levels that propagate to the final classifica-
tion, resulting in blocking artefacts.
The neighbourhood influence for different scale levels can be es-
timated as follows: Let o1 and o> be the standard deviation of
two Gaussian filters G; and G, respectively. The resulting stan-
dard deviation o, when convolving G1 * G2 is

or = /07 +03. (1)

With NN, being the number of Gaussian scale levels and o defined
as 01 = o2 the resulting standard deviation becomes

or =04/ Ng.

For each additional scale level, the neighbourhood /V is increased
by a factor f,,. Therefore, the major neighbourhood influence N;

@
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Figure 2: All image bands are analysed in different scales. For
each pixel location, features 1 — M are extracted within an N x N
neighbourhood which finally compose the feature vector.

for feature extraction can be approximated by

N
= fle

assuming the 1-Sigma interval.
Features like statistical or textural features are extracted from all
scales of all image bands and compose the feature vector for each
pixel location that is passed to SVM classification. The SVM is
based on the implementation of (Chang and Lin, 2001) using the
standard Gaussian RBF kernel.
Classification quality highly depends on local context. Adding
lower scales, i.e. increasing context size, improves classifica-
tion of larger structures and reduces noise. However, additional
smoothing is introduced to classification results. This effect is
exemplarily depicted in Figure 3.

It shows a small extract of the RGB bands from the IKONOS in-
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Figure 3: Classification results (b)—(d) of IKONOS image (a) us-
ing a different number of scales. Ochre: cropland/grassland;
green: forest; from light to dark grey: large, medium, small build-
ing structure.

put image (Figure 3(a)). From Figures 3(b) to 3(d) an increasing
number of scale levels was used to classify the scene. Referring
to Equation 3 with the 1-Sigma interval, areas with approximately
11m (b), 28 m (c), and 43 m (d) edge length account for feature
extraction of each pixel location.

Class labels encoded in colour values point out the smoothing
characteristic. With a small local context classification is noisy,
while it becomes more homogeneous with larger context. Con-



sequently, small regions, e. g. the house in the center, even show
green forest labels for one scale level, but almost completely van-
ish in that they are smoothed out by surrounding regions.

2.2 Mean Shift Segmentation

Parallel to SVM classification, a discontinuity preserving mean
shift segmentation is applied on the input image bands. Here, we
chose the mean image of all input bands. This corresponds to a
grey value of an RGB image, yet considering additional channels
like near infra red.

The mean shift segmentation analyses each pixel within a joint
spatial-range domain spanned by a spatial neighbourhood (spatial
range s) and an intensity range (range ). The analysis window is
shifted towards the mean of all enclosed feature points. This pro-
cess is repeated until convergence and defines the final intensity
value for the initially analysed pixel.

The spatial range s is set to match the spatial radius of the most
detailed level of feature extraction (N x N neighbourhood in the
original input image data). Intensity range r depends on the dis-
tribution of intensity values. To cope with different image char-
acteristics, we adjust range r of the mean shift segmentation with
respect to the image’s histogram. Referring to pixel intensities in
the interval [0, Imaz], 5 % of potential outliers next to both in-
terval boundaries are disregarded. The adjusted range r’ results

m
/ Ig5 7]5
=r

4

]max ( )
with I5 and o5 being the fifth percentile and the 95" percentile,
respectively.

2.3 Weighted Majority Voting

In order to use the capabilities of pixel-wise classification by
well known classifiers like SVMs concerning feature space co-
herence, robustness, and generalisation while taking advantage
of spatial coherence brought by segmentation methods, we intro-
duce a scheme to join results from both, SVM classification and
mean shift segmentation.

Figure 4 exemplarily depicts the mean shift segmented image (b)
of the scene in (a). Since mean shift segmentation basically quan-
tises pixel intensities, resulting segments do not necessarily repre-
sent a unique label. Therefore, a connected-components analysis
is employed before further processing. The resulting segments
serve as basis for the final refinement. For each segment, class
labels from pixel-wise SVM classification (c) are determined. In
the following, a weighted majority voting is presented that as-
signs the dominant class label to all enclosed pixels of a segment,
resulting in (d).

(a) (b) (c) (d)

Figure 4: Rooftop next to grassland. (a) IKONOS (b) Mean shift
segmentation (c) Classification result (d) Refined classification
result. Colours for (c) and (d): ochre: cropland/grassland; from
light to dark grey: large, medium, small building structure

In the preceding sections, pixel-wise classification in different
scales was shown to cause reduced accuracy atimage edges. Thus,
for each position p, the class label is weighted with respect to its
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distance d from segment borders of mean shift segmentation with
weight w,, and factor f to control distance influence. Addition-
ally, probability estimates for SvMs (Lin et al., 2007) allow for
calculation of classification confidence. For each pixel location p,
the first-best-to-second-best ratio determines the certainty c, of
the classification result. This leads to

wp = ¢pIn(fdp). 3)

Within each segment S, the weights w,, with label [,, at position p
are summed up for each unique classification label [:

W)=Y w, 6)
i

Finally, the resulting label [, for a segment S is given by

1(S) = arg m?X(W(l =1)). @)

Intermediate steps of the weighted majority voting are depicted in
Figure 5. The input image (a) is segmented (b) and classified (c).
Distance shown in (d) and certainty c (e) define the weights w as
stated in Equation 5 which results in the final classification (f).
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Figure 5: Intermediate steps of the weighted majority voting.
Colours for (c) and (f): ochre: cropland/grassland; green: for-
est; from light to dark grey: large, medium, small building struc-
ture. Mean shift segmentation (b) was colour adjusted for better
visibility of segments.

As can be seen, the misclassified grey region in (c) at the tran-
sition from forest to cropland is almost completely corrected in
the refined result (f) due to its low weight that contributes to the
segment.

In a worst case scenario a large image segment will be almost ar-
bitrarily relabelled if the underlying classification result consists
of two or more classes with a similar amount of spatial coverage.
Thus, parameters tending towards over-segmentation are chosen
to avoid extensive merging of distinct regions. The smaller the
segments are, the lower their influence is in refinement. In ex-
change, results become more robust. This adds convenience to
parameter adjustment.

3 RESULTS

For our tests, we use ortho-rectified images from the IKONOS
satellite. Four spectral bands — red (R), green (G), blue (B), and
near infra red (NIR) — offering 1 m spatial resolution and 8-bit ra-
diometric resolution are available. The scenes cover areas from
Hildesheim/Germany and Weiterstadt/Germany. Validation sets
originate from both areas and were manually labelled with pixel
accuracy.



For training, a collection of different sets was used to show ro-
bustness in results. This includes sets of manually selected sam-
ples as well as automatically extracted sets from the German
ATKIS!. Training sets are listed in Table 1.

Depending on the processed scene, the sets of four (LCC4) to six
(Lcc6) land cover classes were trained:

e small building structure (LCC6)

e small and medium building structure (LCC4)
e medium building structure (LCC6)

e large building structure (LCC4, LCC6)

e cropland/grassland (LCC4, LCC6)

e trees/bushes (LCC4, LCC6)

e water (LCC6)

Parameters for the classification process were chosen with respect
to robustness for the processed scenes. To cover all significant
structures without losing too much detail, the neighbourhood size
for feature extraction was set to N = 11, corresponding to an
area of 11 x 11m?. One additional Gaussian filtered scale level
was considered with 02 = 10. The neighbourhood size for this
level was slightly increased by factor f, = 1.25. This results in
an area of 13.75 x 13.75m?. According to Equation 3, major
influence V; for feature extraction originates from areas with ap-
proximately 20 m edge length.
For our scenes, two basic features — median and variance — are
used for classification. Additional features like the common Har-
alick’s textural features (Haralick et al., 1973) did not improve
the classification result concerning our test scenarios. All results
were evaluated by pixel-wise comparison to the manually refer-
enced scenes. The results for training sets TO1 — T11 are given
in Table 2. The average relative improvement for different vot-
ing strategies is listed Table 3. The results clearly show an im-
provement for all sets with an average improvement of 4.51 %.
As can be seen, the major contribution for refinement comes
from certainty information (ms_c). The distance (ms_dist) does
not significantly increase the classification result if used without
certainty information. However, in combination (ms_dist_c) there
is an additional improvement. This emphasises the importance of
certainty information. Weighted by distance information, classi-
fication results near the center of a segment are more reliable only
as long as their certainty is high.

3.1 Further Discussion

Figure 6 shows a part of an IKONOS scene from Hildesheim/Ger-
many and results from classification and refinement. Figure 6(b)
demonstrates the characteristics of the refinement in (d) based on
classification in (c). It shows errors that were removed (green) as
well as new errors that occur due to refinement (red). In large,
homogeneous regions like those in the center of the image, the
approach clearly benefits from mean shift segmentation in that

L Amtlich topographisch-kartographisches Informationssystem (Au-
thoritative Topographic Cartographic Information System)

Set Scene Nr. of Classes [ Sample Selection
TO1 —TO3 | Weiterstadt 4 manual

TO04 —TO5 | Weiterstadt 4 GIS

TO06 — TO7 | Hildesheim 6 manual

TO8 —T11 | Hildesheim 4 manual

Table 1: Training data sets from Weiterstadt/Germany and Hil-
desheim/Germany. Sample selection for two scenes was auto-
matically done using a GIS.

245

Set SVM ms ms_dist | ms_c | ms_distc
[%] [%] [%] [%] [%]
TO1 | 66.75 | 67.82 68.01 70.57 71.40
TO2 | 71.33 | 73.08 73.02 | 73.74 73.53
TO3 | 71.19 | 73.76 73.66 | 73.83 73.89
T04 | 61.63 | 63.55 63.71 63.90 64.35
TO5 | 61.90 | 65.02 64.60 | 65.43 65.61
TO6 | 77.24 | 80.14 79.96 80.45 80.37
TO7 | 67.25 | 70.86 70.73 71.22 70.99
TO8 | 75.82 | 78.56 78.55 78.55 78.94
T09 | 81.58 | 83.82 83.99 83.82 83.97
T10 | 65.10 | 67.00 | 67.10 | 67.44 68.43
T11 | 74.33 | 77.37 77.69 77.25 77.53
Avg | 70.37 | 72.82 72.82 | 73.29 73.55

Table 2: Classification results from SVM of validation set for
training data sets TO1 — T11, see Table 1 for reference. Re-
fined results for voting strategies ms (no weighting, w, = 1),
ms_c (only certainty, w, = cp), ms_dist (only distance, w, =
In(fdp)), ms_dist_c (full weighting, w, = cpln(fdy))

ms [%] \ ms_dist [%] \ ms_c [%] \ ms_dist_c [%]
347 | 348 | 415 ] 4.51

Table 3: Average relative improvement for voting strategies given
in Table 2.

spatial coherence is kept and segment boundaries align to image
edges. In fine structured regions, however, there is no significant
difference in the number of new errors and removed errors. For
instance, this is noticeable in the top right corner of the image
where a lot of small building structure is located.

The noise reduction capabilities of the mean shift refinement are
shown in (e) and (f). Based on set T06, neighbourhood size was
set to 9 m x 9 m without any lower scale incorporated. The noise
can be significantly reduced by the proposed refinement as seen
in Figure 6(f). This is backed up by overall classification correct-
ness, too, increasing from 75.39 % to 78.18 % for this configura-
tion.

4 CONCLUSIONS

The approach proposed in this paper combines pixel-wise SVM
classification with mean shift segmentation to improve the over-
all classification result. To join the results from both, classifica-
tion and segmentation, we introduced a weighted majority voting
that takes distance and classification confidence into account. We
have shown that our approach aligns class labels to image edges
to cope with the smoothing, which typically originates from clas-
sification of image content with varying scales. Results were
presented showing that refinement leads to higher detection rates
with 4.51 % relative improvement on average. Additionally, it
was evaluated that a smaller neighbourhood in feature extrac-
tion reduces smoothed classification results, but also adds noise,
which is shown significantly reduced by our approach.
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(a) IKONOS image, Hildesheim/Germany (b) Errors from (c) to (d), green: removed, red: new

(c) Classification result, large context (d) Mean shift refined classification result, large context

(e) Classification result, large context (f) Mean shift refined classification result, small context

Figure 6: Scene from Hildesheim/Germany and results. Colours for (c) to (f): ochre: cropland/grassland; green: forest; from light to
dark grey: large, medium, small building structure; blue: water.
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