
An Onboard Knowledge Representation Tool for Satellite

Autonomous Applications

Fabrício de Novaes Kucinskis
Aerospace Electronics Division (DEA)

 National Institute for Space Research (INPE)
São José dos Campos, Brazil

fabricio@dea.inpe.br

Maurício Gonçalves Vieira Ferreira
Satellite Control Center (CCS)

 National Institute for Space Research (INPE)
São José dos Campos, Brazil

mauricio@ccs.inpe.br

ABSTRACT

Artificial Intelligence Planning and Scheduling (AIPS) techniques

have been used both in ground-based and onboard space

applications. AIPS relies on model-based domain knowledge

representation systems, which is of value for many other

applications, such as diagnosis systems and satellite simulators.

This paper reports the development of an autonomous satellite

onboard planner developed at INPE, and how this project lead us

to start creating a more structured knowledge representation tool.

The tool can be used not only by a planning application, but also

by diagnosis and prognosis systems, satellite simulators and more,

both in onboard and ground-based environments, and even

outside the space field.

Keywords
Knowledge Representation, Artificial Intelligence Planning and

Scheduling, Satellites, Autonomy.

1. INTRODUCTION
Low-Earth orbit artificial satellites operate most of the time

without direct contact with its ground control stations. A satellite

which orbits at about 750 km and has only one control station, for

example, is under the immediate ground operations team

supervision for just 10% of the time of each orbit it performs.

These satellites are controlled through sequences of commands

sent from the ground control stations during the period in which

they are in contact. In order to the satellite be able to execute the

ground-generated commands at any moment of its orbit, each

command has a time tag that express its execution moment. To

this command sequence is given the name of operation plan.

Each command of the operation plan performs a low-level task,

and it is usually necessary wide command sequences to achieve

high-level goals. The generation of operation plans is a labor

intensive process, carried out manually by a highly specialized

staff. Many factors shall be considered in-depth: the current and

future state of each satellite subsystem, time and resource

constraints, the satellite attitude, orbit position and mission phase,

among many others.

To reduce the effort necessary to generate operation plans and

hence its costs, many space agencies have been investing in the

development of computational systems that automate totally or

partially the planning process. These systems are generically

called planners, and some of them implement Artificial

Intelligence (AI) and Operations Research (OR) techniques,

known respectively as planning and scheduling. In addition to

allowing the ground operations automation, these techniques can

be used onboard satellites to change existing plans or create new

ones in response to unpredicted situations, thus increasing its

autonomy. This kind of application is relatively new, and a few

cases were reported up to now.

This paper reports an onboard planner developed at the Brazilian

National Institute for Space Research (INPE, in the Portuguese

acronym). The lessons learned within this project had lead us to

start developing a more structured knowledge representation tool,

one that can be used not only by an autonomous planning

application, but also by diagnosis and prognosis systems, satellite

simulators and more, both in onboard and ground-based

environments.

The paper is organized as follows. Section 2 presents a brief

history of AI planning and scheduling applied to the ground

control of space missions. Section 3 briefly describes the only two

real cases of onboard planning that took place in space missions.

Section 4 reports the development of an onboard planner at INPE.

We describe the decisions made to handle the domain knowledge

and run planning processes onboard satellites, as well as the

lessons learned from such planner. Section 5 shows our current

work focus, the development of an onboard domain knowledge

representation tool. Section 6 lists some related work, and the

current status and our final remarks are stated in Section 7.

2. AI PLANNING AND SCHEDULING IN

SPACE MISSIONS
AI planning is the selection and ordering of activities that, when

executed in a specific order, take a domain from an initial state to

a desired state, or goal state. The domain is usually represented by

a knowledge base in the form of a model. The set of activities that

is the output of the planning process is called a plan.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’08, March 16-20, 2008, Fortaleza, Ceará, Brazil.

Copyright 2008 ACM 978-1-59593-753-7/08/0003…$5.00.

1678

Planning techniques date back from early ‘70s with the STRIPS

planner [1], but it was the addition of OR scheduling concepts,

such as resource consumption, time assignments and Constraint

Satisfaction Problems (CSP), which gave planners the ability to

deal with real-world problems. The union of planning and

scheduling is currently known as Artificial Intelligence Planning

and Scheduling (AIPS). The search for optimal or, in the worst

case, complete and consistent plans that is the purpose of AIPS

fits perfectly the operations routine of space missions.

NASA is the agency that has the greatest experience in the

development and use of AIPS systems for mission control. After

an unsuccessful demonstration of planning in early 80’s [2],

NASA resumed AIPS research in the 90’s with the SPIKE/SPSS

scheduler [3], which helps creating observation plans for the

Hubble Space Telescope. SPIKE was followed by many planners,

such as GERRY/GPSS [4] used for the ground maintenance plan

of the Space Shuttles, HSTS, also developed for Hubble, DCAPS

[5], an experiment that generated operation plans for the Shuttle’s

Data Chaser payload, ASPEN [6], an evolution of DCAPS used in

many current missions, and finally MAPGEN [7], currently in use

in the Mars Exploration Rovers mission.

ESA also has some history with AIPS. Their first experiences,

also in the beginning of the ‘90s, were the planERS-1 [8], to

generate operation plans for the ERS-1 satellite and Optimum-

AIV [9] used to help the assembly, integration and verification

process of equipment for the Ariane IV rockets. More recently,

ESA supported a work that created the MEXAR and MEXAR II

[10] planners for the Mars Express mission.

There is a work in progress at INPE to apply ground-based AIPS

in its missions. This work is described in [11] and [12].

3. ONBOARD AIPS
In all these systems the plans are generated and validated on

ground and just then sent to the spacecraft. There are cases,

however, in which it is desirable the generation or change of plans

aboard the spacecraft to increase its autonomy and allow it to have

a quick response to external events. This is called onboard

planning, and there are only two reported cases up to now, both

from NASA.

In May of 1999, the Deep Space One (DS-1) probe was operated

for some days through detailed operation plans generated onboard

the spacecraft from high level commands sent by the ground

operations team [13]. The experiment, called Remote Agent, was

considered a great success.

More recently, from October of 2003, the remote sensing satellite

Earth Observing One started to execute the Autonomous

Sciencecraft Experiment (ASE), of which the CASPER planner,

an onboard version of ASPEN, is part [14]. CASPER is

responsible for replanning the satellite operations to respond to

the detection of events of scientific interest, such as floods and

volcanic eruptions, which increased the scientific return. The ASE

implementation was gradual, and in April of 2005, the ground

operations team was already using it in normal tasks [15].

These missions place NASA as the only agency to use AIPS

aboard its spacecrafts. ESA has also been investing in the increase

of autonomy with projects such as PROBA [16], but with no

onboard planning up to now.

4. RESOURCES ALLOCATION SERVICE

FOR SCIENTIFIC OPPORTUNITIES
Apart its work with ground-based AIPS, INPE is also developing

onboard planning technology. The Resources Allocation Service

for Scientific Opportunities (RASSO) is an onboard replanning

service which goal is to change scientific satellites’ ground-

generated operation plans in such a way to reallocate resources

(mass memory and power, for example) to experiments when they

detect the occurrence of short-duration scientific phenomena.

Operating with more resources than originally programmed, the

experiments can do a better observation of such phenomena.

Figure 1 shows the RASSO architecture. The arrows indicate the

data flow between the modules during the planning process.

Follows a brief description of the service functioning.

Figure 1 - The RASSO Architecture

An experiment that detects the occurrence of a short-duration

phenomenon sends a request for more resources to RASSO, to

make a better observation (arrow number 1). When receiving the

request, RASSO composes a well-defined problem in the form of

a draft operation plan. This draft plan is created consolidating

information from several sources (arrows 2 to 5), and then is

directed to the planner module (arrow 6), responsible for working

out the conflicts that were inserted in the operation plan because

of the request from the experiment, respecting a set of constraints

and goals that were imposed to it. When succeeding in creating a

plan that takes care of all these requirements, RASSO sends it to

the satellite’s command schedule, turning it the new current

operation plan (arrow 7).

The next section describes how the knowledge about the domain

is embedded in the satellite model to be used by the planner.

4.1 Knowledge Representation in RASSO
RASSO runs on an ERC32 RISC processor (SPARC 32 bits

architecture) at 12 MHz, and has less than 1 Mbyte of memory

available to its execution thread. In order to make the planner

1679

search process feasible with this limited computational power, we

made two main decisions.

The first one was about the kind of problem representation and

search algorithm to be used in such onboard application. The

planning problem should be represented as a Constraint

Satisfaction Problem (CSP) in the form of a draft plan (as

described in section 4), and a local search algorithm, guided by

scheduling constraints, should be used to solve it. When

necessary, disturbances should be inserted in the plan to escape

from local minima and plateau regions of the search space.

The second decision was about how to describe the satellite

domain model to be used by the planner. We concluded that the

satellite model should be described in the same language in which

the planner would be developed, the C++ programming language.

The model elements would be translated in compile-time to data

structures in which they would be handled.

The C++ language is capable of describing a model adequately,

but a model described in C++ would lose in clarity. An engineer

or scientist not used with the programming language and with the

software structure would not understand what is being

represented. Thus, to allow the direct storage in the right data

structures and still keep the model readable, we decided to create

a model description language over C++, through the use of

macros that hide all structures, pointers and function calls used by

the planner.

The use of macros to implement this language, that was named

RASSO_ml, makes the task of converting a model instruction to

data structures being a responsibility of the C++ compiler pre-

processor. The model description is comprised in a

“domain_model.h” header file, which is compiled together with

the planner. Thus, the model elements are always ready to be

manipulated by the planner, with no parsing and eliminating a

great part of the initialization process.

This approach is similar to the one taken in the Task Description

Language (TDL) [17]. The difference is that, in TDL, it is not the

compiler pre-processor itself that translates the language

constructs into programming code, but a specialized parser.

With RASSO_ml it is possible to describe model components

through classes and elements (instances of classes), activities with

its pre-conditions and effects, exogenous events, resources and

constraints. Activities and events can take advantage of any C++

language construct, such as conditionals, switch statements and

loops, as well as C++ libraries such as <math.h>. There is no

space in this paper to describe all this features, so see [18] for

more information.

4.2 Lessons Learned
When we started RASSO, we were not totally sure that a domain

description mixed with programming source code would work as

expected, but this proved to be a right choice. Any domain

specialist familiarized with languages such as C, C++ or Java can

quickly edit models in RASSO_ml, being necessary only to learn

some basic concepts and a few language instructions. The

handling of the compiled model components by the planner is

pretty simple, since the same instructions that describe activities

and events effects can be called by the planner to get or set the

model state – even the initial and goal states.

The local search algorithm with CSP has shown to be appropriate

for onboard execution, although we have room for improvements.

As an example, currently there is no plan optimization. Any

consistent plan, which leads the satellite to the goal state and

respects all the imposed constraints, are accepted.

When showing RASSO results, we were asked by colleagues if

this system could be used in a range of different applications, such

as onboard diagnosis and prognosis and satellite simulation. After

some discussion, we figured out that it is not RASSO which

would be used in those applications, but the domain model it

comprises. So, we decided that the next step would be to develop

a more structured knowledge representation tool, over which

different onboard applications, and even ground ones, such as a

satellite simulator, could be made. We called this tool the Space

System Model (SSM).

5. THE SPACE SYSTEM MODEL
SSM is the evolution of RASSO’s satellite domain model. It

provides a domain representation language, state inference,

constraint propagation and resource consumption/generation

profiles, among other features.

Domain knowledge is represented by two different descriptions: a

static (structural) description and a dynamic (behavioral)

description. A real-world interface maps the model elements,

resources, activities and events to real satellite subsystems,

commands, etc, allowing SSM to interact with the satellite. Figure

2 shows the SSM knowledge representation structure.

Figure 2 - SSM Knowledge Representation Structure

The static description contains the satellite model structure, that

is, the elements that constitute a satellite (such as its subsystems

and payload), the classes from which the elements are created, and

the resources available for consumption by those elements. It is

those description components that are translated by the C++

compiler into data structures to be handled by SSM in run-time.

Elements are instances of classes, and a timeline is created for

each element. That means that SSM provides methods to get or set

the initial, previous, current and goal states of an element.

Resources consumption/generation are informed in rates, not in

“closed” amounts. When calling an activity that turns on a

thruster, for example, one can inform that this thruster consumes

fuel “at the rate of 0.1 units per second”. A following turn off

activity will cease the fuel consumption. This is closer to the real

1680

satellite operation and gives more flexibility to search algorithms

than the usual planning approach, in that one would state that “the

thruster will operate for ten seconds and will consume 1 unit of

fuel”.

The dynamic description contains the operators that can change

the model state. These operators are called by applications at run-

time to infer the satellite behavior. There are two types of

operators: activities and events. Activities are related to any kind

of internal satellite command, at any level. It can represent a low-

level single command, or an entire onboard procedure (this is up

to the modeler). Events describe the effects of exogenous events,

such as the entrance in eclipse, over the satellite.

The model is described in the same way it was in RASSO, that is,

in a C++ header file, with a new language based on RASSO_ml.

A simplified code snippet is shown in Figure 3.

One of the uses of the real-world interface is the SSM model

check feature. It consists of inferring the satellite response to the

current operation plan and exogenous events, and verify the

expected behavior at given intervals. It is important to use this

feature to verify the accuracy of the model, before using it in a

planning or diagnosis application.

Another important part of SSM are the constraints. They are

informed inside the activities and events, or submitted to SSM by

an application (for example, a planner could submit constraints

alongside with goals). Constraint propagation methods are applied

to the model at any change in its state.

Two of the applications foreseen to be developed over SSM are

outlined in the following subsections.

5.1 Onboard Autonomous Reaction Agent
The first application to use SSM will be the Onboard

Autonomous Reaction Agent (OAR Agent). Roughly speaking it’s

a new version of RASSO, with a wider scope – it is not intended

just to reallocate resources to experiments, but to modify plans at

any contingency situation to achieve different kinds of goals.

The search algorithm will be an improved version of the one used

in RASSO. In an ERC32 processor running at 12MHz, RASSO is

capable of finding consistent plans in about two minutes. That is

far from being a bad result, but it could be better. We realized that

we can develop reasonable search algorithms, but this is not our

strong point. That’s why OAR agent will accept third-party

planning algorithms, that implement theirs own search strategy

and heuristics.

5.2 Diagnosis and Prognosis Agent
An extension of the SSM model check feature, the Diagnosis and

Prognosis Agent will infer the satellite behavior in the short and

medium-term future. It will delivery commands or send reports to

the ground operations team when specific (probably error) states

are predicted, or when one predicted state differs from the actual

value that is read from the satellite.

We have plans to use this agent also in a ground-based satellite

simulation system.

6. RELATED WORK
NASA has some onboard model-based systems already used in

space missions, and others in development.

The DS-1 Remote Agent experiment used a tool called

Livingstone [19] to keep its onboard models. Livingstone is

developed in LISP and is capable not only to infer the overall

behavior of the system, but also to monitor it. Since the Remote

Agent, Livingstone has flown in a number of different missions.

The Remote Agent is also the basis of another system that relies

on an onboard model: the Intelligent Distributed Execution

Architecture (IDEA) [20], a framework that unifies planning and

execution and is under development by NASA Ames Research

Center. IDEA is proposed to use the same primitives and semantic

to the model in all system layers, to simplify its implementation

and validation. The model and all the states it assumes are kept in

the Plan Service Layer (PSL) database, which is similar to our

Space System Model.

Another onboard planning and execution system that is being

developed is the Coupled Layered Architecture for Robotic

Autonomy (CLARAty) [21]. CLARAty is a joint project between

NASA JPL, NASA Ames, Carnegie Mellon University and other

universities. It is meant to be used in space-based robotic control

applications. CLARAty has two layers: a functional layer of

robotic primitives, coupled with a decision layer of planning and

execution functionality. The result is that it depends on two

modeling frameworks, one for planning (CASPER), and another

for execution (TDL). SSM applications, on the contrary, will rely

on only one domain model.

7. FINAL REMARKS
The Space System Model is currently under development. Once

we have finished this phase, we will start developing the

applications described in Section 5, being the OAR Agent the first

Figure 3 – A simplified domain_model.h code snippet

using namespace ssm;

// static description //////////////////////

create_class(experiment,
 exp_name name;
 bool on;
 int sample_rate;
);

create_element(ionex, experiment);
create_element(grom, experiment);

// dynamic description /////////////////////

activity turn_on(experiment exp)
{
 // activity pre-conditions

 precondition(exp.on.get_current() ↵
 == false);

 // ionex experiment cannot be turned off
 precondition(exp.name != ionex);

 // activity effects
 exp.on.set_current(true);

 // report success to the SSM
 activity_completed;
}

1681

of them. SSM has also a great potential for being used in non-

space missions. We plan to explore those fields, once we have

some results with our space applications.

8. ACKNOWLEDGMENTS
We would like to thank the Fundação de Amparo à Pesquisa do

Estado de São Paulo (FAPESP), for supporting part of this work.

9. REFERENCES
[1] Fikes, R. E. and Nilsson, N. J. STRIPS: a new approach to

the application of theorem proving to problem-solving.

Artificial Intelligence, v. 2, n. 3-4, pp. 189-208, 1971.

[2] Vere, S. Planning in time: windows and durations for

activities and goals. IEEE Transactions on Pattern Analysis

and Machine Intelligence, v. 5, pp. 246-267, 1983.

[3] Johnston, M. SPIKE: AI scheduling for NASA’s Hubble

space telescope. In Proceedings of the IEEE conference on

AI applications, 1990, Santa Barbara, USA, pp. 184-190.

[4] Zweben, B., Davis, M., Daun, E. and Dale, M. Scheduling

and rescheduling with iterative repair. IEEE Transactions on

Systems, Man, and Cybernetics, v. 23, n. 6, Nov / Dec 1993.

[5] Rabideau, G., Chien, S., Mann, T., Willis, J., Siewert, S. and

Stone, P. Interactive, repair-based planning and scheduling

for shuttle payload operations. In Proceedings of the IEEE

aerospace conference, 1997, Aspen, CO, USA.

[6] Fukunaga, A., Rabideau, G., Chien, S. and Yan, D. Towards

an application framework for automated planning and

scheduling. In Proceedings of the international symposium

on artificial intelligence robotics and automation in space

(I-SAIRAS), 1997, Tokyo, Japan.

[7] Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Cheng-

Jung, J., Jónsson, A., Kanefsky, B., Morris, P., Rajan, K.,

Yglesias, J., Chafin, B., Dias, W. and Maldague, P.

MAPGEN: mixed-initiative planning and scheduling for the

Mars Exploration Rover mission. IEEE Intelligent Systems,

v. 19, n. 1, pp. 8-12, Jan/Feb 2004.

[8] Fuchs, J. J., Gasquet, A., Olalainty, B. and Currie, K. W.

PlanERS-1: an expert planning system for generating

spacecraft mission plans. In Proceedings of the international

expert planning systems conference, 1990, London, pp70-75.

[9] Aarup, M., Arentoft, M. M., Parrod, Y., Stader, J. and

Stokes, I. Optimum-AIV: a knowledge-based planning and

scheduling system for spacecraft AIV. Knowledge Based

Scheduling, Fox, M. and Zweben, M., ed.. Morgan

Kaufmann, San Mateo, CA, USA, 1994.

[10] Cesta, A., Oddi, A., Cortellessa, G., Fratini, S. and Policella,
N. AI-based tools for continuous support to mission

planning. In Proceedings of the 9th international conference

on space operations (SpaceOps 06), Rome, Italy, June 2006.

[11] Biancho, A. C., Carniello, A., Ferreira, M. G. V., Silva, J. D.

S. and Cardoso, L. S. Multi-agent ground-operations

automation architecture. In Proceedings of the 56th

international astronautical congress (IAC ’05), Fukuoka,

Japan, October 2005.

[12] Cardoso, L. S., Ferreira, M. G. V. and Orlando, V. An

intelligent system for generation of automatic flight operation

plans for the satellite control activities at INPE. In

Proceedings of the 9th international conference on space

operations (SpaceOps ’06), Rome, Italy, June 2006.

[13] Bernard, D., Dorais, G., Gamble, E., Kanefsky, B., Kurien,

J., Man, G. K., Millar, W., Muscettola, N., Nayak, P., Rajan,

K., Rouquette, N., Smith, B., Taylor, W. and Tung, Y. W.

Spacecraft autonomy flight experience: the DS1 remote agent

experiment, In Proceedings of the AIAA 1999, Albuquerque,

NM, USA, September 1999.

[14] Chien, S., Sherwood, R., Tran, D., Castano, R., Cichy, B.,
Davies, A., Rabideau, G., Tang, N., Burl, M., Mandl, D.,

Frye, S., Hengemihle, J., D’agostino, J., Bote, R., Trout, B.,

Shulman, S., Ungar, S., Van Gaasbeck, J., Boyer, D., Griffin,

M., Burke, H., Greeley, R., Doggett, T., Williams, K., Baker,

V. and Dohm, J. Autonomous science on the EO-1 mission.

In Proceedings of the international symposium on artificial

intelligence robotics and automation in space (I-SAIRAS),

2003, Nara, Japan.

[15] Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G.,
Castaño, R., Davies, A., Mandl, D., Frye, S., Trout, B.,

D'Agostino, J., Shulman, S., Boyer, D., Hayden, S., Sweet,

A. and Christa, S. Lessons learned from autonomous

sciencecraft experiment. In Proceedings of the autonomous

agents and multi-agent systems conference, Utrecht,

Netherlands, July 2005.

[16] Teston, F., Creasey, R., Bermyn, J., Bernaerts, D. and

Mellab, K. PROBA: ESA's autonomy and technology

demonstration mission. In Proceedings of the 13th

AIAA/USU conference on small satellites, Logan, UT, USA,

September 23-26, 1999.

[17] Simmons, R., Apfelbaum, D. A task description language for

robot control. In Proceedings of Conference on Intelligent

Robotics and Systems, 1998, Vancouver, Canada.

[18] Kucinskis, F. N. and Ferreira, M. G. V. Dynamic allocation

of resources to improve scientific return with onboard

automated replanning. In Space operations: mission

management, technologies, and current applications,

Progress in Astronautics and Aeronautics, v. 220, Chapter

20, pp. 345-359, AIAA, Reston, USA, September 2007.

[19] B. C. Williams and P. P. Nayak. A model-based approach to

reactive self-configuring systems. In Proceedings of AAAI,

1996.

[20] N. Muscettola, G. Dorais, C. Fry, R. Levinson and C. Plaunt.

IDEA: planning at the core of autonomous reactive agents. In

Proceedings of the Workshops at the AIPS-2002 Conference,

Tolouse, France, April 2002.

[21] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T.

Estlin and Kim, W. S. CLARAty: an architecture for reusable

robotic software. In Proceedings of the SPIE Aerosense

Conference, Orlando, Florida, April 2003.

1682

