
QPL/DCM 2008

Modelling Parallel Quantum Computing using
Transactional Memory

Juliana Kaizer Vizzotto1

Centro Regional Sul-CRS
Instituto Nacional de Pesquisas Espaciais-INPE

Santa Maria, Brazil

André Rauber Du Bois2

Programa de Pós-Graduacão em Informática
Universidade Católica de Pelotas

Pelotas, Brazil

Abstract

We propose a model for parallel quantum computing in a singleensemble quantum computer using Haskell’s software
transaction memory. The parallel ensemble quantum computer possesses, besides quantum parallelism, a kind of classical
single-instruction-multiple-data parallelism. It explores additional speedup by making quantum computers workingin paral-
lel, as in classical computation. The whole state is prepared in such a way a subset of qubits is in a mixed state representing
the communicating quantum computers while the other qubitsin pure state are the proper argument registers of each quan-
tum computer. Essentially, this particular way of structuring the state of the parallel quantum computer fits with what is
well know as multithreading programming. Software transactional memory is a promising new approach to programming
shared-memory parallel programs. The functional programming language Haskell elegantly implements this abstraction for
concurrent communication.

Keywords: Ensemble quantum computing, parallel quantum computing, transactional memory

1 Introduction

Ensemble quantum computing [3] (EQC) is in general physically realized by some scheme
using NMR. It essentially differs from traditional quantumcomputing only in that it uses
many copies of a quantum system (e.g., a liquid solution - such as each molecule is po-
tentially a single quantum computer) and the result of a measurement is the expectation
value of the observable, rather than a random eigenvalue. Parallel quantum computing in
a single ensemble quantum computer [9] (PQC from here) explores the ensemble to gain
additional speedup. Besides quantum parallelism, intrinsic from the use of superposed
quantum states, a kind of classical single-instruction-multiple-data parallelism is achieved

1 Email: juvizzotto@gmail.com
2 Email: dubois@atlas.ucpel.tche.br

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:juvizzotto@gmail.com
mailto:dubois@atlas.ucpel.tche.br

Vizzotto

by making quantum systems (the molecules) working in parallel, as in classical computa-
tion. In the PQC the whole state is prepared in such a way a subset of qubits is in a mixed
state representing the communicating quantum computers while the other qubits in pure
state are the proper argument registers of each quantum computer. The authors have shown
that the PQC enables additional speedup to important quantum algorithms like Grover and
Shor. Specially, unsorted database search can be speedup greatly.

We have noted that this particular way of structuring the state of the PQC fits with what
is well know as multithreading programming. Basically, in amultithreading environment, a
process has many execution threads, each of which run independently and which may share
a common memory area. What is interesting here is that computationally, the PQC quantum
state, living in a Hilbert space, is interpreted asglobal. Hence, all quantum computer of the
PQC share a commom global memory area.

That is not new the need of synchronization mechanisms for parallel programs and there
are many alternative approaches in the literature, such aslocksandmutexes. However has
been claimed by several authors [11,8,7] that those programming styles are hard to use and
may easily produce programs with errors.

Software transactional memory is a promising new approach to programming shared-
memory parallel programs. The functional programming language Haskell elegantly im-
plements this abstraction for concurrent communication.

This work is a stepping stone towards the development of a high level and elegant
approach to structure and project parallel quantum algorithms.

2 Parallel Quantum Computing in a Single Ensemble Quantum
Computer

The idea in the PQC [9] is to run many copies of quantum systems, which are in the en-
semble, in parallel. The goal, as in classical computation,is to achieve additional speedup
running tasks in parallel. By running several identical quantum computers in parallel, un-
sorted database search, for instance, can be speeded up greatly [4].

Consider an EQC quantum computer model withN1 = 2n1 molecules, such that each
molecule can be operated and measured. The PQC computer works in a state called argu-
ment register which is divided into two parts: one part withn1 qubits calledn1-register and
another part withn2 qubits calledn2-register, andn = n1 + n2. Before a computation, the
argument register is in a mixed state withN1 constituent. Each constituent is characterized
by the state of then1-register. Then2-register in a given constituent is in a superposed state
of its N2 = 2n2 basis states. The density operator of the ensemble is

ρ =
1

N1

N1−1∑

j1=0

[

N2−1∑

j2=0

cj1,j2|j1, j2〉][

N2−1∑

j2=0

cj1,j2〈j1, j2|]

In the EQC, there areN1 constituents andN1 molecules. Each molecule is in a different
state

∑N2−1
j2=0 cj1,j2|j1, j2〉, which is a superposition ofN2 number of computational basis

states.
A unitary transformation on the computation state described above can be denoted by:

ρ→ ρc = UcρU−1
c =

1

N1

N1−1∑

j1=0

[

N2−1∑

j2=0

cj1,j2Uc|j1, j2〉][

N2−1∑

j2=0

cj1,j2〈j1, j2|U
†
c]

2

Vizzotto

This quantum computation is defined as the parallel quantum computing. In fact it is
N1 quantum computers working in parallel. The computationUc can be the same for all
molecules, but the databases, numbers represented by different molecules, can be different.

Measurements are treated as average expectation values in the PQC and will be dis-
cussed in the further version of this work.

3 Software Transaction Memory in Haskell

In [5], STM Haskell, a new concurrency model for Haskell based onsoftware transactional
memoryis proposed. In this model, programmers defineatomic blocksthat are executed
atomically with respect to every other atomic block. STM Haskell provides theatomically

primitive to define atomic blocks:
atomically :: STM a → IO a

The atomically primitive takes amemory transaction(STM a) as an argument and
executes it atomically. Amemory transactionis committed only if no other transaction
has modified the memory its execution depends on. If there wasconcurrent access to
shared variables the transaction is restarted. An execution of atomically block must guar-
antee [10]:

• Atomicity: The effects of anatomically block are visible all at once to other threads

• Isolation: The execution of anatomically block can not be affected by the execution of
other threads. Anatomically block executes as if it had its own copy of the state of the
program

Inside of a memory transaction a program can read and write into transactional vari-
ables. A variable of typeTVar a is a transactional variable that can hold a value of type
a. STM Haskell provides the following primitives for readingand writing on transactional
variables:

readTVar :: TVar a → STM a

writeTVar :: TVar a → a → STM ()

ThereadTVar primitive takes aTVar as an argument and returns an STM action that,
when executed, returns the current value of theTVar . ThewriteTVar primitive is used to
write a new value into aTVar . STM actions can be composed together using the samedo

notation used to composeIO actions in Haskell:
addTVar :: TVar Int → Int → STM ()

addTVar tvar i = do {v ← readTvar tvar

; writeTVar tvar (v + i)}

TheaddTVar function can be used to read and then write a new value into aTVar .
These two actions can be executed atomically by using theatomically primitive:

incTVar :: TVar Int → IO ()

incTVar tvar = atomically (addTVar tvar 1)

Inside a memory transaction, only pure functions andSTM actions can be executed.
As a transaction may be aborted and re-run, the type system guarantees that no other irre-
vocable side-effects likeIO actions can be performed inside an atomic block.

STM Haskell also provides aretry ::STM () primitive that is used to abort a transaction
so that it can be restarted from the beginning:

3

Vizzotto

withdraw :: TVar Float → Float → STM ()

withdraw tvar v = do {r ← readTVar tvar

; if (r < v) then retry

else writeTVar tvar (r − v)}

Transactions can also be composed asalternativesusing theorElse function. The
transactiont1 ‘orElse ‘ t2 will first attempt to executet1, if it retries then transactiont2 will
be executed. Ift2 also retries then the entire call retries.

4 Quantum Arrows

In an early work [12] we have shown that the superoperators formalism used to express
general quantum operations is an instance of a generalization of monads calledarrows [6].

In this section, we briefly review state vectors representedas monads and the density
matrix approach. Then we discuss how superoperators can be well fit in the concept of
arrows. The presentation is in the context of the functionalprogramming language Haskell.

4.1 Vectors as Monads

Given a seta representing observable (classical) values, i.e. abasisset, a pure quantum
state is a vectora → C which associates each basis element with a complex probability
amplitude. In Haskell, a finite seta can be represented as an instance of the classBasis ,
shown below, in which the constructorbasis :: [a] explicitly lists the basis elements. The
basis elements must be distinguishable from each other, which explains the constraintEq a

on the type of elements:
class Eq a ⇒ Basis a where basis :: [a]

type K = Complex Double

type Vec a = a → K

The typeK (notation from the base field) is the type of probability amplitudes.
The monadic functions for vectors are defined as:
return :: Basis a ⇒ a → Vec a

return a b = if a ≡ b then 1.0 else 0.0

(>>=) :: (Basis a,Basis b)⇒ Vec a → (a → Vec b)→ Vec b

va >>= f = λb → sum [(va a) ∗ (f a b) | a ← basis]

return just lifts values to vectors, andbind , given aunitary operator(i.e.,unitary operator)
represented as a functiona → Vec b, and given aVec a, returns aVec b (that is, it specifies
how aVec a can be turned in aVec b). Actually, as explained in [12], because of theBasis

constraint over the sets which we can build vectors, we use a slight more general concept
of monads calledkleisli structure[1] or indexed monads.

4.2 Superoperators as Arrows

Intuitively, density matrices can be understood as a statistical perspective of the state vector.
In the density matrix formalism, a quantum state that used tobe modelled by a vectorv is
now modelled by its outer product.

type Dens a = Vec (a, a)

pureD :: Basis a ⇒ Vec a → Dens a

4

Vizzotto

pureD v = lin2vec (v〉∗〈v)

lin2vec :: (a → Vec b)→ Vec (a, b)

lin2vec = uncurry

The functionpureD embeds a state vector in its density matrix representation.For
convenience, we uncurry the arguments to the density matrixso that it looks more like a
“matrix.”

Operations mapping density matrices to density matrices are calledsuperoperators:
type Super a b = (a, a)→ Dens b

The application function>>= above defines how the superoperator is going to act over the
matrix.

The concept of arrows [6] extends the core lambda calculus with one type and three
constants satisfying nine laws. The type isA → B denoting a computation that accepts a
value of typeA and returns a value of typeB, possibly performing some side effects. The
three constants are:arr , which promotes a function to a pure arrow with no side effects;
>>>, which composes two arrows; andfirst , which extends an arrow to act on the first
component of a pair leaving the second component unchanged.

Just as the probability effect associated with vectors is not strictly a monad because
of the Basis constraint, the typeSuper is not strictly an arrow as the following types
include the additional constraint requiring the elements to be comparable. We have defined
the concept ofindexed arrowsin [12], which allows the constraint. Bellow we show the
instantiation of typeSuper as an arrow.

arr :: (Basis b,Basis c)⇒ (b → c)→ Super b c

arr f = fun2lin (λ(b1, b2)→ (f b1, f b2))

>>> ::(Basis b,Basis c,Basis d)⇒ Super b c → Super c d → Super b d

f >>> g b = (f b >>= g)

first :: (Basis b,Basis c,Basis d)⇒ Super b c → Super (b, d) (c, d)

first f ((b1, d1), (b2, d2)) = permute ((f (b1, b2))〈∗〉(return (d1, d2)))

where permute v ((b1, b2), (d1, d2)) = v ((b1, d1), (b2, d2))

The functionarr constructs a superoperator from a pure function by applyingthe function
to both the vector and its dual. The composition of arrows just composes two superopera-
tors using thebind from Section4.1. The functionfirst applies the superoperatorf to the
first component (and its dual) and leaves the second component unchanged. The definition
calculates each part separately and then permutes the results to match the required type.

4.3 A Better Notation for Arrows

Following the Haskell’s monadicdo-notation, Paterson (2001) presented an extension to
Haskell with an improved syntax for writing computations using arrows. We concentrate
only on the explanation of new forms which we use in our examples. Here is a simple
example to illustrate the notation:

e1 :: Super (Bool , a) (Bool , a)

e1 = proc (a, b)→ do

r ← lin2super hadamard ≺ a

returnA ≺ (r , b)

5

Vizzotto

The do-notation simply sequences the actions in its body. The function returnA is the
equivalent for arrows of the monadic functionreturn. The two additional keywords are:

• thearrow abstractionproc which constructs an arrow instead of a regular function.

• thearrow application≺ which feeds the value of an expression into an arrow.

Paterson (2001) shows that the above notation is general enough to express arrow com-
putations and implemented a Haskell’s module which translates the new syntax to regular
Haskell. In the case ofe1 above, the translation to Haskell produces the following code:

e2 :: Super (Bool , a) (Bool , a)

e2 = first (lin2super hadamard)

Hence, using the arrows approach in Haskell one can manipulate the quantum state
in a high level way. For instance, having defined the right operations, the teleportation
algorithm [2] can be programmed as the following:

teleport :: Super (Bool ,Bool ,Bool) Bool

teleport = proc (eprL, eprR, q)→ do

(m1,m2)← alice ≺ (eprL, q)

q ′ ← bob ≺ (eprR,m1,m2)

returnA −< q ′

The code would be a superoperator which acts over a three qubit density matrix (of type
Dens (Bool ,Bool ,Bool)) and returns a one qubit matrix (of typeDens Bool). Using
superoperators as arrows, the quantum state can be easily manipulated as above.

5 Modelling Parallel Quantum Computing using STM

We propose to use density matrices insideTVars :
type QSt a = TVar (Dens a)

In such a way we can define a global quantum state which can be accessed an manipu-
lated by all parallel/distributed processes. This seems tobe exactly what we need to code
the multithreading PQC presented in Section2. The use of superoperators can greatly help
the processes to access only small parts of the state.

The goal of usingSTM is to synchronize the access of critical parts of the state when
doing critical operations like measurements.

A very simple example of an operation on theQSt a is the identity operation codded
below:

qid :: (Basis a)⇒ QSt a → Super a a → STM ()

qid qtvar s = do {d ← readTVar qtvar

;writeTVar qtvar (d >>= s)}

Teleportation is a typical distributed quantum algorithm.The idea of teleportation is
to disintegrate an object in one place making a perfect replica of it somewhere else. In-
deed quantum teleportation [2] enables the transmission,using a classical communication
channel, of an unknown quantum state via a previously sharedepr pair.

Using arrows and the notation introduced by Patterson, we have expressed quantum
teleportation in [12].

We break the algorithm in two individual procedures,alice andbob. Besides the use
of the arrows notation to express the action of superoperators on specific qubits, we incor-

6

Vizzotto

porate the measurement in Alice’s procedure, and trace out the irrelevant qubits from the
answer returned by Bob.

alice :: Super (Bool ,Bool) (Bool ,Bool)

alice = proc (eprL, q)→ do

(q1, e1)← (lin2super (controlled qnot)) ≺ (q , eprL)

q2 ← (lin2super hadamard) ≺ q1

((q3, e2), (m1,m2))← meas ≺ (q2, e1)

(m1 ′,m2 ′)← trL ((q3, e2), (m1,m2))

returnA ≺ (m1 ′,m2 ′)

bob :: Super (Bool ,Bool ,Bool) Bool

bob = proc (eprR,m1,m2)→ do

(m2 ′, e1)← (lin2super (controlled qnot)) ≺ (m2, eprR)

(m1 ′, e2)← (lin2super (controlled z)) ≺ (m1, e1)

q ′ ← trL ≺ ((m1 ′,m2 ′), e2)

returnA ≺ q ′

Having defined Alice and Bob procedures we can now codify the teleportantion proce-
dure using theQSt . The idea is to arrange the state inside theQSt as proposed in Section2.
In this way we will have a quantum state shared by Alice and Bob. The first qubit inside
theQSt is the identifier, saying if the state is from Alice or Bob.

6 Conclusion

We have proposed a model for parallel quantum computing in a single ensemble quantum
computer using Haskell’s software transaction memory. We hope this approach will give
us a simple and high level way to write and develop parallel quantum algorithms.

Acknowledgements

We would like to thank our colleagues Amr Sabry and Antônio Carlos da Rocha Costa for
interesting discussions and feedback on our work.

References

[1] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using generalized inductive types. In
Computer Science Logic, 1999.

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. Wootters. Teleporting an unknown quantum state
via dual classical and EPR channels.Phys Rev Lett, pages 1895–1899, 1993.

[3] David G. Cory, Amr F. Fahmy, and Timothy F. Havel. Ensemble quantum computing by nmr spectroscopy.Natl. Acad.
Sci. USA, 94:1634–1639, 1997.

[4] Lov K. Grover. Quantum mechanics helps in searching for aneedle in a haystack.Phys. Rev. Lett., 79(2):325–328, Jul
1997.

[5] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable memory transactions. In
PPoPP’05. ACM Press, 2005.

[6] John Hughes. Generalising monads to arrows.Science of Computer Programming, 37:67–111, May 2000.

[7] Simon P. Jones. Beautiful concurrency, 2007.

[8] Edward A. Lee. The problem with threads.Computer, 39(5):33–42, 2006.

7

Vizzotto

[9] Gui Lu Long and L. Xiao. Parallel quantum computing in a single ensemble quantum computer.Phys. Rev. A, 69(5):55–
92, 2004.

[10] Simon Peyton Jones.Beautiful Concurrency. O’Reilly, 2007.

[11] Ravi Rajwar and James Goodman. Transactional execution: Toward reliable, high-performance multithreading.IEEE
Micro, 23(6):117–125, 2003.

[12] Juliana K. Vizzotto, Thorsten Altenkirch, and Amr Sabry. Structuring quantum effects: Superoperators as arrows.
Mathematical Structures in Computer Science, special issue on Quantum Programming Languages, 16:453–468, 2006.

8

	Introduction
	Parallel Quantum Computing in a Single Ensemble Quantum Computer
	Software Transaction Memory in Haskell
	Quantum Arrows
	Vectors as Monads
	Superoperators as Arrows
	A Better Notation for Arrows

	Modelling Parallel Quantum Computing using STM
	Conclusion
	References

