Modelling Parallel Quantum Computing using
Transactional Memory

Juliana Kaizer Vizzottb

Centro Regional Sul-CRS
Instituto Nacional de Pesquisas Espaciais-INPE
Santa Maria, Brazil

André Rauber Du Bofs

Programa de Pos-Graduacao em Informatica
Universidade Catolica de Pelotas
Pelotas, Brazil

Abstract

We propose a model for parallel guantum computing in a siegleemble quantum computer using Haskell's software
transaction memory. The parallel ensemble quantum compotsesses, besides quantum parallelism, a kind of cssic
single-instruction-multiple-data parallelism. It expge additional speedup by making quantum computers woikipgral-

lel, as in classical computation. The whole state is preparsuch a way a subset of qubits is in a mixed state representi
the communicating quantum computers while the other gubitgire state are the proper argument registers of each quan-
tum computer. Essentially, this particular way of struictgrthe state of the parallel quantum computer fits with what i
well know as multithreading programming. Software tratisa@al memory is a romisin(]; new approach to programming
shared-memory parallel programs. The functional programgiianguage Haskell elegantly implements this abstradto
concurrent communication.

Keywords: Ensemble quantum computing, parallel quantum computiagsactional memory

1 Introduction

Ensemble quantum computing] [EQC) is in general physically realized by some scheme
using NMR. It essentially differs from traditional quantwomputing only in that it uses
many copies of a quantum system (e.g., a liquid solution h @.sceach molecule is po-
tentially a single quantum computer) and the result of a oreasent is the expectation
value of the observable, rather than a random eigenvaluall&ajuantum computing in
a single ensemble quantum comput@r (PQC from here) explores the ensemble to gain
additional speedup. Besides quantum parallelism, intrifrem the use of superposed
quantum states, a kind of classical single-instructiodtipla-data parallelism is achieved

L Email:j uvi zzot t o@mai | . com
2 Email: duboi s@t | as. ucpel . t che. br

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

mailto:juvizzotto@gmail.com
mailto:dubois@atlas.ucpel.tche.br

vV A4V 4 LS

by making quantum systems (the molecules) working in pelrads in classical computa-
tion. In the PQC the whole state is prepared in such a way asobgubits is in a mixed
state representing the communicating quantum computeite Wie other qubits in pure
state are the proper argument registers of each quantumutempphe authors have shown
that the PQC enables additional speedup to important goealgorithms like Grover and
Shor. Specially, unsorted database search can be speezhily.gr

We have noted that this particular way of structuring theestéthe PQC fits with what
is well know as multithreading programming. Basically, imaltithreading environment, a
process has many execution threads, each of which run indepty and which may share
a common memory area. What is interesting here is that catipoélly, the PQC quantum
state, living in a Hilbert space, is interpretedgéabal. Hence, all guantum computer of the
PQC share a commom global memory area.

That is not new the need of synchronization mechanisms fatlpbprograms and there
are many alternative approaches in the literature, sudbcisandmutexes However has
been claimed by several authodd 8,7] that those programming styles are hard to use and
may easily produce programs with errors.

Software transactional memory is a promising new approagrdgramming shared-
memory parallel programs. The functional programming leagge Haskell elegantly im-
plements this abstraction for concurrent communication.

This work is a stepping stone towards the development of h legel and elegant
approach to structure and project parallel quantum alyost

2 Paralle Quantum Computingin a Single Ensemble Quantum
Computer

The idea in the PQCY] is to run many copies of quantum systems, which are in the en-
semble, in parallel. The goal, as in classical computai®tg achieve additional speedup
running tasks in parallel. By running several identicaluan computers in parallel, un-
sorted database search, for instance, can be speeded tip [gtea

Consider an EQC quantum computer model with= 2" molecules, such that each
molecule can be operated and measured. The PQC computes iwalstate called argu-
ment register which is divided into two parts: one part withqubits calledr -register and
another part witny qubits calledho-register, anch = nq + no. Before a computation, the
argument register is in a mixed state with constituent. Each constituent is characterized
by the state of the,-register. Theu,-register in a given constituent is in a superposed state
of its Ny, = 2™2 basis states. The density operator of the ensemble is

| Nzl Ned No—1
P=N, Z [Z Cjy g ld1s 32)[Z Cj1,ja (15 J2]
J1=0 72=0 Jj2=0

In the EQC, there aré/; constituents andv; molecules. Each molecule is in a different
stater-\;ZO1 ¢j1 42|71, j2), which is a superposition a¥,; number of computational basis
states.

A unitary transformation on the computation state desdrédsove can be denoted by:

| Ml Va1 No—1
P Pc= chc_l = [Z ¢jr 2 Ueldns 32)1 Z Cj1,52 <j1>j2|UcT]

Ny~ ~— =
J1=0 j2=0 jo=0

2

vV A4V 4 LS

This quantum computation is defined as the parallel quantompating. In fact it is
N; quantum computers working in parallel. The computafi@nrcan be the same for all
molecules, but the databases, numbers represented hniffaclecules, can be different.

Measurements are treated as average expectation values BQC and will be dis-
cussed in the further version of this work.

3 Software Transaction Memory in Haskell

In [5], STM Haskell, a new concurrency model for Haskell basedadtware transactional
memoryis proposed. In this model, programmers defib@emic blockshat are executed
atomically with respect to every other atomic block. STM kasprovides theztomically
primitive to define atomic blocks:

atomically :: STM a — 10 a

The atomically primitive takes amemory transactioffS7TM a) as an argument and
executes it atomically. Anemory transactioris committed only if no other transaction
has modified the memory its execution depends on. If thereomasurrent access to
shared variables the transaction is restarted. An execafiatomically block must guar-
antee 10]:

e Atomicity: The effects of amtomically block are visible all at once to other threads

e |solation: The execution of amtomically block can not be affected by the execution of
other threads. Amtomically block executes as if it had its own copy of the state of the
program

Inside of a memory transaction a program can read and wiibetiansactional vari-
ables A variable of typeT'Var «a is a transactional variable that can hold a value of type
a. STM Haskell provides the following primitives for readiagd writing on transactional
variables:

readTVar :: TVar a — STM a
writeTVar :: TVar a — a — STM ()

ThereadT Var primitive takes al'Var as an argument and returns an STM action that,
when executed, returns the current value of THeéwr. ThewriteT Var primitive is used to
write a new value into & Var. STM actions can be composed together using the shmne
notation used to compod® actions in Haskell:

addTVar :: TVar Int — Int — STM ()
addTVar tvar i = do {v « readTvar tvar
; write TVar tvar (v+1i)}
The add T Var function can be used to read and then write a new value irftVar.
These two actions can be executed atomically by usingtheically primitive:
incTVar :: TVar Int — 10 ()
incTVar tvar = atomically (addT Var tvar 1)
Inside a memory transaction, only pure functions &Jd\/ actions can be executed.

As a transaction may be aborted and re-run, the type systamamgpees that no other irre-
vocable side-effects likéO actions can be performed inside an atomic block.

STM Haskell also provides@try:: STM () primitive that is used to abort a transaction
so that it can be restarted from the beginning:

3

vV A4V 4 LS

withdraw :: TVar Float — Float — STM ()
withdraw tvar v = do {r « readTVar tvar
;if (r < v) then retry
else writeTVar tvar (r —v)}
Transactions can also be composedatisrnativesusing theorElse function. The
transaction; ‘orFElse’ to will first attempt to execute,, if it retries then transactioty, will
be executed. If; also retries then the entire call retries.

4 Quantum Arrows

In an early work 2] we have shown that the superoperators formalism used teexp
general quantum operations is an instance of a generalizatimonads calledrrows|[6].

In this section, we briefly review state vectors represeatedonads and the density
matrix approach. Then we discuss how superoperators carelyditwin the concept of
arrows. The presentation is in the context of the functipmaggramming language Haskell.

4.1 \ectors as Monads

Given a sefta representing observable (classical) values, i.basisset, a pure quantum
state is a vecton — C which associates each basis element with a complex prdaigabil
amplitude. In Haskell, a finite setcan be represented as an instance of the dkasss,
shown below, in which the constructédsis :: [a] explicitly lists the basis elements. The
basis elements must be distinguishable from each othecjvexiplains the constrairig a
on the type of elements:

class Eq a = Basis a where basis :: [a]

type K = Complex Double

type Veca =a — K
The typeK (notation from the base field) is the type of probability aitoples.

The monadic functions for vectors are defined as:

return :: Basis a = a — Vec a

return a b = if a = b then 1.0 else 0.0

(>=) :: (Basis a, Basis b) = Vec a — (a — Vec b) — Vec b

va>=f =Ab— sum [(va a)* (f a b) | a « basis]
return just lifts values to vectors, ardnd, given aunitary operator(i.e., unitary operatoj
represented as a functian— Vec b, and given d’ec a, returns aVec b (that is, it specifies
how a Vec a can be turned in &ec b). Actually, as explained inl2], because of th&asis
constraint over the sets which we can build vectors, we usigla snore general concept
of monads calledleisli structure[1] or indexed monads

4.2 Superoperators as Arrows

Intuitively, density matrices can be understood as a $italperspective of the state vector.
In the density matrix formalism, a quantum state that usdukbtmodelled by a vectar is
now modelled by its outer product.

type Dens a = Vec (a, a)

pureD :: Basis a = Vec a — Dens a

4

vV A4V 4 LS

pureD v = lin2vec (v)*(v)
lin2vec :: (a — Vec b) — Vec (a,b)
lin2vec = uncurry

The functionpureD embeds a state vector in its density matrix representatteor.
convenience, we uncurry the arguments to the density msdrithat it looks more like a
“matrix.”

Operations mapping density matrices to density matricesatedsuperoperators

type Super a b = (a,a) — Dens b
The application functions= above defines how the superoperator is going to act over the
matrix.

The concept of arrowss] extends the core lambda calculus with one type and three
constants satisfying nine laws. The typedis— B denoting a computation that accepts a
value of typeA and returns a value of typ8, possibly performing some side effects. The
three constants areirr, which promotes a function to a pure arrow with no side effect
>>, which composes two arrows; arfttst, which extends an arrow to act on the first
component of a pair leaving the second component unchanged.

Just as the probability effect associated with vectors tsstrictly a monad because
of the Basis constraint, the typeuper is not strictly an arrow as the following types
include the additional constraint requiring the elementse comparable. We have defined
the concept ofndexed arrowsn [12], which allows the constraint. Bellow we show the
instantiation of typeSuper as an arrow.

arr :: (Basis b, Basis ¢) = (b — ¢) — Super b c

arr f = fun2lin (A(b1,b2) — (f b1,f b2))

>> ::(Basis b, Basis ¢, Basis d) = Super b ¢ — Super ¢ d — Super b d

[>gb=(fb>=g)

first :: (Basis b, Basis ¢, Basis d) = Super b ¢ — Super (b, d) (¢, d)

first £ (b1, 1), (ba,d2)) = permute ((f (b1, b2)){x) (return (d1,d2)))

where permute v ((bl, bg), (dl, dg)) = ((bl, dl), (bg, dg))

The functionarr constructs a superoperator from a pure function by applfiegunction
to both the vector and its dual. The composition of arrows gosnposes two superopera-
tors using thebind from Sectiord.1. The functionfirst applies the superoperatgrto the
first component (and its dual) and leaves the second companehanged. The definition
calculates each part separately and then permutes thesresmiatch the required type.

4.3 A Better Notation for Arrows

Following the Haskell's monadido-notation, Paterson (2001) presented an extension to
Haskell with an improved syntax for writing computationsngsarrows. We concentrate
only on the explanation of new forms which we use in our exasiplHere is a simple
example to illustrate the notation:
e1 :: Super (Bool, a) (Bool, a)
e1 = proc (a,b) — do
r «— lin2super hadamard < a
returnA < (r,b)

vV A4V 4 LS

The do-notation simply sequences the actions in its body. ThetiomeeturnA is the
equivalent for arrows of the monadic functieeturn. The two additional keywords are:

« thearrow abstractionproc which constructs an arrow instead of a regular function.
¢ thearrow application< which feeds the value of an expression into an arrow.

Paterson (2001) shows that the above notation is generafrio express arrow com-
putations and implemented a Haskell's module which traesléhe new syntax to regular
Haskell. In the case a1 above, the translation to Haskell produces the followingeco

ea :: Super (Bool, a) (Bool, a)
ea = first (lin2super hadamard)

Hence, using the arrows approach in Haskell one can matéptile quantum state
in a high level way. For instance, having defined the rightrajens, the teleportation
algorithm] can be programmed as the following:

teleport :: Super (Bool, Bool, Bool) Bool
teleport = proc (eprL, eprR, q) — do
(m1,m2) < alice < (eprL, q)
q' — bob < (eprR,m1,m2)
returnA —< ¢’
The code would be a superoperator which acts over a thre¢ dgisity matrix (of type
Dens (Bool, Bool, Bool)) and returns a one qubit matrix (of typgeens Bool). Using
superoperators as arrows, the quantum state can be easilyuiaded as above.

5 Modédling Parallel Quantum Computing using STM

We propose to use density matrices insid&ars:
type QSt a = TVar (Dens a)

In such a way we can define a global quantum state which candessed an manipu-
lated by all parallel/distributed processes. This seenimtexactly what we need to code
the multithreading PQC presented in Sect®ilhe use of superoperators can greatly help
the processes to access only small parts of the state.

The goal of usingSTM is to synchronize the access of critical parts of the staterwh
doing critical operations like measurements.

A very simple example of an operation on th&t « is the identity operation codded
below:

qid :: (Basis a) = QSt a — Super a a — STM ()
qid gtvar s = do {d < readTVar qtvar
;writeTVar gtvar (d >=s) }

Teleportation is a typical distributed quantum algorithithe idea of teleportation is
to disintegrate an object in one place making a perfectaamf it somewhere else. In-
deed quantum teleportatio@][enables the transmissionsing a classical communication
channe] of an unknown quantum state via a previously shayedpair.

Using arrows and the notation introduced by Patterson, we kapressed quantum
teleportation in12].

We break the algorithm in two individual proceduregice and bob. Besides the use
of the arrows notation to express the action of superoparato specific qubits, we incor-

6

vV A4V 4 LS

porate the measurement in Alice’s procedure, and traceheutielevant qubits from the
answer returned by Bob.
alice :: Super (Bool, Bool) (Bool, Bool)
alice = proc (eprL, q) — do
(q1,e1) < (lin2super (controlled gqnot)) < (q, eprL)
g2 — (lin2super hadamard) < q1
(g3, €2), (m1,mg)) < meas < (gz, €1)
(m1’,m2") — trL ((gs, e2), (m1,m2))
returnA < (m1’, m2")
bob :: Super (Bool, Bool, Bool) Bool
bob = proc (eprR,my, ms) — do
(m2',e1) « (lin2super (controlled gnot)) < (ma, eprR)
(m1’,eq) « (lin2super (controlled z)) < (mq,e1)
¢ — trL < ((m1’,m2'),ez)
returnA < ¢’

Having defined Alice and Bob procedures we can now codifyefepbrtantion proce-
dure using th&)St. The idea is to arrange the state inside €& as proposed in Sectich
In this way we will have a quantum state shared by Alice and. Bdte first qubit inside
the St is the identifier, saying if the state is from Alice or Bob.

6 Conclusion

We have proposed a model for parallel quantum computing ingdesensemble quantum
computer using Haskell's software transaction memory. Wfehthis approach will give
us a simple and high level way to write and develop paralleingum algorithms.

Acknowledgements

We would like to thank our colleagues Amr Sabry and Antonarl@s da Rocha Costa for
interesting discussions and feedback on our work.

References

[1] Thorsten Altenkirch and Bernhard Reus. Monadic prest@onts of lambda terms using generalized inductive types. |
Computer Science Logi¢999.

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. PanesW. Wootters. Teleporting an unknown quantum state
via dual classical and EPR channdihys Rev Letpages 1895-1899, 1993.

[3] David G. Cory, Amr F. Fahmy, and Timothy F. Havel. Enseenfpllantum computing by nmr spectroscopiatl. Acad.
Sci. USA94:1634-1639, 1997.

[4] Lov K. Grover. Quantum mechanics helps in searching foeedle in a haystackhys. Rev. Lett79(2):325-328, Jul
1997.

[5] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurigerlihy. Composable memory transactions. In
PPoPP’05 ACM Press, 2005.

[6] John Hughes. Generalising monads to arrosience of Computer Programmir2i7:67-111, May 2000.
[7] Simon P. Jones. Beautiful concurrency, 2007.

[8] Edward A. Lee. The problem with threadSomputer 39(5):33-42, 2006.

7

vV A4V 4 LS

[9] g;zw Iz_goLong and L. Xiao. Parallel quantum computing in agle ensemble quantum computBhys. Rev. A69(5):55—
, 4.

[10] Simon Peyton Jone®&eautiful ConcurrencyO’Reilly, 2007.

[11] Ravi Rajwar and James Goodman. Transactional execulmwvard reliable, high-performance multithreadinGEE
Micro, 23(6):117-125, 2003.

[12] Juliana K. Vizzotto, Thorsten Altenkirch, and Amr SgbrStructuring quantum effects: Superoperators as arrows.
Mathematical Structures in Computer Science, speciakissuQuantum Programming Languagé$:453-468, 2006.

	Introduction
	Parallel Quantum Computing in a Single Ensemble Quantum Computer
	Software Transaction Memory in Haskell
	Quantum Arrows
	Vectors as Monads
	Superoperators as Arrows
	A Better Notation for Arrows

	Modelling Parallel Quantum Computing using STM
	Conclusion
	References

