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" DESTABILIZING EFFECT OF SMALL DAMPING

Leon Sinay +

In 1890,Lord Kelvin,[ 6 ],indicated that the stability or instability

L))

of the eguilibrium state of a system sithout dissipative or gyroscopic forces
is not changed by the introduction of damping.This need not be true when dis-
sipative forces zre applied to other than non-gyroscopic,conservative systems
In fact,Ziegler,[7 ,8 ,9 ]1,proved that a critical load of a non-conservative
system can be decreased by adding damping.Further studies on this subject have
been done by Bolotin,[ 1l ],Herrmann,[ 4 ],Hagedorn,[ 3 ],and others,

Is our purpose to show this effect in the mechanical model of f£fig.1
It consists 8f two rigid wightless bars of equal length {,carrying concentra-
ted masses m =m, =m at the endpoints and connected by a linear torsional
spring.The lower endpoint of the linkage is kept fixed and angular motion is
resisted by another torsional spring.Friction is present in . tne .system at
the pivots.

After a suitable change of variables,the differential equations of

motion,which can be derived using Lagrange equations, are:

(1) 2x" + y"cos(x~-y) + (y')zsin(x-y) + (b1+ bz)x' - b2y'+ 2x -y - Asin(x-y) =0

(2) =x"cos(x-y) + y" - (x')zsin(x-y) = b

()=4
dt

1 1 iy
0% + b2y s Xy @

x(t) = y(t) = 0 is the only time independent solution of (1) and (2).
since (2) implies x = y and then (1) implies x -0.

In order to study the stability of this equilibrium state,which we shall
denote by Xo,we consider the variational problem of (1) and (2) with respect
to XO:

(5) 2% 4 y" E (bl + bz)x' - bzy' + (2 -A )X 2 (1 -~ )Y o

(4) =" 4+ y" -~ b, x' + b2y' -x+y=0

2

We investigate solutions of the variational problem in the form x = a

t :
y = a2ed .This leads to the homogeneous system of algebraic equations:
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(5) [202+(b1+b2)g+2-}\]a1+[gz-bg+1-1]a2=o

2
2
(6) [gz-bzc-l]al + i[.g +b20+1]a2=0

and to the characteristic equation:

L (b, + 5b2)c;3 + (6 +bb, - N Yoo % (b, +bo +1 =0

I1f b1= b2 = 0,(no damping),the four roots of (7) are

® 31

® oy=2l2r-3+¥(2r-2(2-67

These roots are pure imaginary for ) less than the critical loal xz =2
taking on the values + 1 .at it Thus, Xo is neutrally stable for ) on the in-
terval [0,2]., For A > xz two of the roots have positive real part,then Xo is
linearly unstable,it is then possible to prove that Xo is nonlinearly unstable
foxisiy > 12, ol xz, the nonlinear stability or instability of Xo can
not be decided by the nature of the solutions of the variational equations as
was pointed out by Liapunov,[ 5 ].It has not been determined if XO is asympto-
tically stable or not in this case.

When the damping coefficients are not simultaneously zero, application

of the Routh-Hurwitz criterion shows that there exists a critical load Ao >

defined by

2 2
b1 +6 b1b2 + b2 blb2
S oals o =+ —=
bl + b1b2 + 5b2 2
such that the real parts of the four roots of (7) are negative if A e A,
At do= Ags the real parts of two of the roots vanish.becoming positive for

x> Ag- Hence,Xo is asymptotically stable for < X and nonlinearly unstable
for o> Kc' At A = Xc the solution Xo is linearly neutrally stable
Applying the argument theorem of analytic functions, it is possible

to prove that two of the roots of (7),let us say ¢g_ and gy have negative real

5
parts for every A

The behavior of the real and imaginary parts of the roots as functions
of A is displayed in figures 2a,b,c and 3a,b,c for some representative values

of b1 and b2



=b_=0
12
In the dampéd case,and when b2 = 0,the critical load and gl(xc).which are

AT = u
we have then seen that the critical force is Kc = 2 when b

equal to 2 and i respectively, are independent of bl,while for b2 Lo, .
depends on the ratio as well as on the magnitudes of the damping coefficients
The complex frequency

b1 + b
(10) cl(xc) = lw, = T e

depends only on the ratio of the damping coefficients
Tn the limiting case of vanishing damping.i.e when b1 and b2
tend simultaneously to zero,the results corresponding to the undamped model

can not be obtained unless lim ( b1 /b2) = o0 as bl’b2 - 0.

Differentiating lc with xpespect to b2 and equating to zero,we have:

4 3 2 2 3 4
an 54[b1 + 4b (3b] - 8)by + 2(23b) - 48)by, + 60b by + 25D,
172

=0
7 72 !
(b1 + 6 b1b2 + 5 b2 )
A root of this equation is b2 = 0,In addition we have determined
numerically that it also has two positive real roots,let us say bZl(bl) and
b22(b1),for fixed b1 in the interval 0 < b1 < b1 - b1= 1.334418
For fixed bl in this interval,xc has a relative maximum at b21(b1)
and a relative minimum at b22(b1),(Tab1e 1) .This behavior is illustrated in
fig.4 for which we have chosen an arbitrary value of b1 in 0 < b1 < .El
At any point (b;,b,) with b, in the interval (O Bl) and
b21(b1) = b2 < b22(b1)’ the damping has a destabilizing effect since A 18
a monotone decreasing function of b2 and therefore the critical force can be
lowered by incrementing the damping in the upper joint of the mecanical model
As a consequence of the discontinuity of the critical force,in the
1imit case of vanishing damping, the analysis of the destabilizing effect of
small damping requires a special treatment We have found numerically that.
as b1 tends to zero,so does b21(b1) Moreover, db21(b1)/-db1 , which can be
found by implicit differentiation of the left hand side of equation (11) and

evaluated numerically,tends to zero too,



By equating kc to 2,one obtains:

2 g e
(12) , o.5b2[5blb2+2(5b1_8)b2+b1]_o

A solution of this equation is b2 = 0,and the quadratic
factor yields two other roots when solved for b2 in terms of bl.Those
two roots,which we shall denote by b25(b1) and b24(b1)’ i 50
are real and positive provided O < b1 < bi = V%_:—ETT?- s 1.236068.
and therefore (12) has three real roots in an interval which is
contained in the interval where (11) has two positive real roots.
On 0 < bl < bi, b25(b1) is a monotene increasing function and.its
limit,as well as the limit of its derivative with respect to bl’
is zero as b1 tends to zero.By Rolle's theorem, 0= b21<bl) < b23(b1)
on the interval where they are both defined, (Table I).

This indicates that if in ‘the ‘undamped case,Xo is proven
té be'nonlinearly ‘stable for 0 < X' 2 then,by choosing the damping
coefficients in the ranges 0 < bl < bi and b23(b1) < b2 < b24(b1)’
the critical force decreases,i.e., xc < 2.Thus damping can destabilize
the system,That is the critical force can be lowered in the presence
of damping. On the other hand, if 0 < b2 < b25(bl),then Xy > xz and
damping has a stabilizing effect in that region,

Ziegler,[ 10 ],has shown that this phenomenon can also be
found in a model consisting of a disk mounted in a shaft rotating with
angular velocity w,when only internal'damping is considered,He points
out that there exist differences between the critical velocity predicted
by the theory and the experimental messures which do not reflect the
destabilizing effect . He solves the discrepancy by considering external
friction.Another possible explanation has been given by Dimentberg,| S 58

who conjectures that in a more realistic model,hysteresis effects should



be considered,Other examples of destabilizing effect of damping can
be found in Ziegler,[ 10 ].

Herrmann,[ 4 ],has studied the destabilizing phenomenon
in a mechanical model like the one in fig, 1 ,with m; = Zm, m_ = m,
finding xg = 35,5 = J2 and

2 2
it gatis 4 by + 33 b + 4 by : b.b,
(13) Bt 2 ]
2( b + 7 byb, + 6 b7 ) 2

Assuming bi << 1,4 = 1,2,and defining the ¢ritical force
for small damping as
2 2
4b1+55b1b2+4b2

(14) B =

2( by + 7 byb, + 6 b )

he neglected blhz//Z and considered the ratio Fd/ xz a9 a function of
ﬂ::bl/ b2, The forces ratio is strictly less than one,except when

B= Fﬁ = 4 + 52 where it is equal to 1. In this way he concluded that

the presence of damping has a destabilizing effect which is eliminated

only at that particular value ﬁ*pThis ig in contradiction with our

result that damping has a stabilizing effect on an open region of

the bl-b2 plane instead of only on a straight line.To see that Herrmann's

conclusion is erroneous for (13) we consider the ratio xc/ xz,

(perrmann's functions . and xz ) ,instead of Fd/ xz and do not neglect

ble compared to F We numerically determine that Kc/ 12 has the

o
value 4/ (7 - 2Y2) ~ ,959 at b

5 = 0,it increases to a relative

maximum,decreases with increasing b, up to a point where it reaches a

2

relative minimum and finally,increases,all this provided 0 < b, < 1,126,

L

i,e,,the same type of behavior our function xc has, (fig..6.).



(15)

(16)

(17)

Within this interval,there are three different values of b2,let us

say b all of them depending on b., where the ratio }\c/ )\2

212P92:P23 > 1°

takes on the value 1,Furthermore, b and b22 are differentiable

21

functions of bﬂ_ and lim b21 = 1k b:22 =02 as b1 tends to zero. In

Table II are given some numerical values of b ,1=1,2,3 For small b

21 12

as well as the inverses of the derivatives of b2 and b2 with respect

i 2

to bl;it follows from those numerical results that both inverses
*
approach the common value /A3 .,

These results can also be found analytically.First,it
must be noted that blb2/ 2 can not be neglected when )\C is compared
with )\2 since their difference is equal to
g

2
2(b1 i 7b1b2 + 6b2)

2

ol

bb, - (3 - 2v2)

e o
sl LV

and both terms can have the same order of magnitude when b1 and b2

o
are small and b1 ed - 4 bz.Moreover,if it neglected,one is missled

%
to the result b1 = bz,while this is only the first order approximation

to two different positive real roots of
u
)\c & )xc =0

In order to find a better approximation,let us set

bl = ¢ cont(e) $ b2. = sin X (¢) (e >0)
in . (16) using its expression . (155 Assuming & is at least twice
continuously differentiable with respect to e¢,we apply perturbation
techniques to solve the equation

. 2
%62 sinok cosoC - (1.5 - V2) (cos - @B sin )

; Mk
(cos™ + 7cosX sink + Hsinx )

=40



(18)

(19)

(20)

(21)

(22)

When ¢ = 0, we have

cot & (0) = /-3*

The derivative of the left hand side of (17) with
respect to ¢ at ¢ = O is zero,Differentiating twice with respect
to € and setting € = O,we obtain

[ sinaC(0) + 3 cosac(0) 1% (0)

(242 - 3)
[ coszo((O) + 7coso(0) *sin(0) + 6sin%x(0)]
+ sine (0) -cosgl(0) = O,
or
B (3 2B L (B2 2
KT (0)" =0
oy [ {F) SgE T o) Totves
so L
CHTF D R+ 6
QESO) = +
poL. 19 212
2o .083945

and therefore

bie er dos| cot-%e* .083945e+ 0O( 62) ]

|+

b = sin[ COt-lp* i .O83945€+ 0( 62) ]

The angle defined by the two curves given parametrically in

% *

(21,22) contains the line bl =B bz,showing that the double root (3
splits in two,different ones,thus,the destabilizing effect desappears

and b, are in that angle,or

= *b but wh b
=f 52 but whenever b, 9

not only at b1

more precisely,in the cuspidal region defined by b21 and b22,
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Captions for figures

Figure 1 Mechanical model.

Figure 2a Real part of the.solution o(A) of (7),vs the force 3,

b1 = .l,b2 =10

Figure 2b Imaginary part of the solution o(A) of (7),vs. the force ),
b1 = ,1,b2 = 0,

Figure 2c Real and imaginary parts of the solution o(d) of (7) corresponding
to figures 2a,b . b1 = .l,b2 =0

Figure 3a Same as Figure 2a with b1 = .l,b2 = ,2

Figure 3b Same as Figure 2b with b1 = ,1,b2 =i 2

Figure 3c Same as Figure 2c with b1 = Al,bz =itiD

Figure 4 Cirtical force A, VS, b2. b1 = 1.126

Figure 5 Locus in the bl-b2 plane where A = xz = 2

Figure 6 The ratio xc/xz s Kc and xz from reference 4, b1 = o125

Figure 1
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Let Q(A, §,.2) be the 2n-th degree polynomial
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