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Abstract
The purpose of the present paper is to caÌculate, using modal decom -

position, constant - speed, space-periodic solutions of the MicheÌson -

Sivashinsky equation. We thus determine secondary bifurcation points

and the relationship between the flame velocity and the wave uumber'

Keywords : Flames, Celluìar, Stability' Bifurcation

Introduction

Body-force, hydrodynamic and thermal-

diffusive effects are the three main phenomena

determining intrinsic instabilities of premixed,

plane flame fronts.

An stability analysis, in which body-forces

are neglected and the flame front is treated

a.s a discontinuity in density propagating with

constant velocity normal to itself, leads to

the well known result of unconditional insta-

bility [11. The influence of thermal-diffusive
effects seenr to have been first addressed by

Zel'dovich[2]. It is now a well establisÌred

fact that when the Lewis Number .L. Ls less

than one, i.e., the reactant is strougìy diffu-

sive, thermal-diffusive instability occurs'

LeÍ ltn the width of the thermal structure of

the flame, Va the uortnal velocity of tìre flame
reìative to the burut gas, ?6 the adiabatic tern-
perature of the

combustion products, o the coefficient of ther-

mal expansion of the gas ( o < 1) and .RP ttte

universal gas constant, theu, the behavior of

hydrodynamic instabilities caused by therrnaÌ

expansion of the gas and transport effects is

characterized by the solution of the Michelson-

Sivashinsky equation [3]
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of the flame front, ( is the dirnensiouless space
coordinates vector, both measured in units of
116, r is dimensionless titne in urlits oÍ lmfVu

and
e:  (L""  -  L . )  l (1  -  t r .o) ,

being .L"" tìre critical Lewis Number defined

by
L . " : l - 2 l U ( r - o ) .

.E is here the diurensionless activation energy

in units of ,RoT6.
Numerical integration suggests that, un-

der suitable conditiolrs, equation (1) possesses

space-periodic soìutions travelling with con-
stant, non-zero velocity[4]. Several analyticaì
works also show tlrat this is so in the partic-

ular case of the Kuramoto-Sivashinsky equa-
tion (o : 1) [5, 6, 7, 8, 9]. The purpose of the
present paper is to calculate constant-speed,

space-periodic solutious of the one-dimension

forrn of (1) using modal decornposition. In this

way, we determine the relationship existing be-

tween the flame velocity, wave-number and a
physical parameter À to be defined below'

Existence of constant-speedt
' 

lic solutionsspace - peÌlo(

Let us consider tÌre one-dimension form of (1),

and let

wlrere

À:  211+ e l (1  -  o ) l l r l " / '  ,

sgn is the signum functiolr and /(2, ú) is the

function obtained from / after the change of

variables . It is interesting to observe that

À-2l3 is the scaling factor of L.o - Lu in the

derivation of (1) under the conditions E --+ oo

and o -+ 1 while E(L - a) remains finite'

Let us now seek coustant-speed, 2l-space-
periodic solutions of (2). In this case the inte-
gral in it can be replaced by the series
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where

òr, : br,(/, l) :

The period of the sought solution can be fixed

equal to 2zr setting tí2: ts where n: r/ l.We

thus obtain from (2)

0 g  , d g  o ô 2 g
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with S@) : /(/cc), b,, : , 'tn,11Ì
cn :  cn (g ,7T ) .

It is evident that g : 0 is a solution of (3) for
alì À and rc. Linearizing tÌre equatiotr arouttd

this solutiou we have
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then, equation (1) is transforrned into tìre
pair of oÌle-paralneter equations;
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ìÀrlÌere the dots on 0,, aud c,, indicate thc
coeÍficients corresponding to ú. Setting g :

exp(urí * iz) we get

b n :

+

À _ç n -

+

Hence,

, t : - t í 4  * s g n ( e )  n 2 + n ^ .

One must observe in (4) that tr :

that  e i ther  n:0 or

(4)

0 irnplies

(5)

which yiclds

n4u.ío + sgn(e) rczu"
(6)

+ |x21u; '12  :  p+  Àrc / [u ] .

an equation which ha.s a 2zr-periodic solution
guaranteed by the bifurcation theorern [10]''We 

can thus expand it iu its Fourier Series

6

\ ì  ^ z  ru(r): Lo(p) cospr. (7)
P = l

with, so far, unknown coefficients ú(p).\Me
must observe that

b r . : b r . ( cosp r )=6no ,
cn:  cn(ccsPc) :  0 ,

heuce, usiug (7) in (6),
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Expanding the square and collecting ltar-

monics, we obtain the infinite system of al-
gebraic equations valid Íor Tt: Lr2,. . , i

[ ( r")n -  sgn(e) (no)" -n rc.r ]a(n)
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Sumn-ration rvith p from l to n - 1 in (9)

lnust be understood as zero n'ltett ?t: 1,
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Let us analyzethis last case. Simple algebraic i

manipulation of equations (4,5) shows that (a)

always possesses oue and only one non-zero,
positive root. At it,

À : Ào(rc) : rc3 - sgn(e) rc

: ,(*2 - sgn(e) ).

The root of (4) for e ) 0 occurs only for rç 2 1.
Since n and À are real so is t.r, therefore

for fixed À, u = 0 is unstable if n < E.*(À),
where ,íi(À) are the roots of equation (5), cor-
responding the plus and lninus signs to e ) 0
and e < 0 respectively. One can then expect a
nol-trivial, constant-speed, space-periodic so-
lution of (3) onìy iu the unstable region. In
order to deterrnine it we set

g ( r , t ) - - 1 . t t * u ( r : ) ,

u(r  *Ztr)  :  u(t : )Vr.
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Once (9) has been solved, p. is determinedby
the fornrula

I  , -  t  ^ D .  ,
r :  Ãn  Lp .  ü . \p ) ,

P=1

corresponding to the constant term of (8),
which can also be obtained by direct integra-
tion of both terms of equation (6) using the
periodicity of u(o) and Parseval,s equality, i.e.,
the velocity is tÌre square of the .L2 norm of the
solution's gradient.

Any numerical method for solving a finite
truncation of (9) would require a, not at all
obvious, initial guess. However, one must ob-
serve tlrat ú(rt) : g yn is a solution of (g)
for all n and À. Linearizing around it we have
a l s o  f o r  n :  I , 2 r . , ,  :

[(n n)a - sgn(e) (n n)' - n n À] a'@) : o

Since we want a fundamental period 2zr, tìren,
either ú (rr) : 0 Vn, or equatiol (5) must be
satisfied. Using régular perturbation methods
and bifurcation tÌreory, oue calÌ seek solutions
of (9) in tÌre form À : À(y), À(0) : Às(r) =
n3 - sgn(e) rc, rc fixed. Up-to t"rro. oi o.a".
o(u3), this procedure yieÌds :

a+@) È 6trtt/ + =r= !n"' , ,.'  
BlT6z - sgn(e)l

6ns u3
48[7 n2 - sgn(e)] [13ri2 - sgn(e)]

À + r y r c 3 - s g u ( e ) r c * K U 2
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Discussion of results and
conclusions

We have implemented the algorithtn described
in the previous section using ten rnodes, ob-
taining results for botlr e positive and neg-
ative, varying li from, respectively, 1.1 and
0.5 to 2.0 The procedure, started with an ap-
proxirnation obtained using a combination of
power series and Fourier series [g], coÌlverges
for eacÌr fixed k up to a maxirnurn value of À,
which we shall denote by À"(È), as shown in
Figure l. At this morirnurn, Às(È) : À(2k)
and p(À"(/t)) : p(À(2k)) (Figure 2), wtrite
the shapes of the flames fronts agree, result-
ing in a secoudary bifurcation point, as exern-
plified in Figure 3, where we shorv the shapes
of the flarnes fronts for three different values
of À between the primary bifurcation point of
2/i and À"(k). The inner rnaximum of the
2rf k-periodic solution âppears at a value of
) smaller than the oue wìrere the flame veloc-
ity p attains its maximum, evolving with in-
creasing À toward the same value of thern. At
this point,the shapes of the rf k and 2nlk-
periodic solutions coincide when the fonner is
considered over two full periods.

Comparing Figures 2 and 3one must observe
that if a ga-s is such that its coustant À is at
the critical value À"(È) for some k, a variation
in its physical properties, in such a way that,
À varies to a value sligìrtÌy lesser than Àu(I;)
will rnake the flame to have one of tu,o dif-
ferent configurations, traveìling witìr diffèrent
velocities.

Whether tlre flame wiÌl present one or tÌre
other configuration depends on the stability of
these soìutioìÌs, ârì analysis that tvilì be pre_
sented elsewere. Euristicalìy, oue should ex_
pect that the slower, and le.ss corrugated flame
(the rfk-periodic solution has two maxima
and one minimurn over a period ancÌ tìre 2a./k_

(10) periodic oue has tìrree rnoiima ancl tu,o urirr-

u*=ff{r+
16[7 nz - sgn(e)]2



Figure 1: Flame velocity;,c as a function of À at
the secondary bifurcation points. k varies from
1.1 and 0.5 to 2.0 for e positive and negative
respectively.

ima over its period) will be the stable one and
therefore, the only one of possible physical re-
alization.

We have introduced in this paper a param-
eter À which summarizes the physical prop-
erties of a gas mixture, and del,ermined the
dependence of the periodic soìutions of the
one dimensional Michelson-Sivashinsky equa-
tion on À, as well as the depeudence ofthe pri-
mary, secondary bifurcation points and the the
flarne veìocity on this paratneter, Although, as
said before, the physical properties of the ga-s
mixture are sumlÌìarized by À, it is not enough
to fully describe the periodic solutions of (B)
because they are quantitativeìy aud qualita-
tively different for positive and negative €, a
fact that should be expected, siììce thcy cor-

-€-  * .  t .s  . t  o
--A- r -3.0 e>0

{f-  r= 1.5 e<0
-+- x=3.0 c<

10

Figure 2: Response curves of the flame velocity
p as a function of À for li : 1.5 and /c : 3.0,
positive and negative e.

respond to Lewis numbers greater and smaller
than the critical Lewis Number.

We have not exausted in this article aÌì
tlre possible investigatiorìs on the one dimen-
sional Michelsol-Sivasìrinsky equation and
much work renrains to be done. For exarn-
ple, the relationships between the findings here
aud the stretching and curvature of the flatue
rernains to be studied, a research for rvÌrich,
we believe, the algorithm of rnodal deconrpo-
sitions rviìl be suitablc.
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Figure 3: Flame shapes for k : 1.5 and k :
3.0, positive e. Of both curves with the sarne
symbol, the upper one corresponds to k: 1.5.

References

[1] Landau, L. et Lifchitz,E., Mécanique des
Fluides, Tome VI, Mir, Moscou; pp 5g4,
1971.

[2J Will iams, F. 4., Combustion Theory.2ú
Ecl., The Benjaurin/Cummings Pub. Co.,
Inc., Menlo Park, 1985.

[3] Sivashinsky, G. 1., Nonlinear analysi,s
of hydrod.gnomic instabiüty in laminar
fiames-L Deriuation of basic equations.
Acta Astrolautica, 4 (Lg7T) pp 11ZZ -
1206.

[4J Michelson, D. M. ard Sivashinsky, G. 1.,
Nonlinear anal,ysis of tryúodynanic in-
stability in laminar tlo.tnes-Il. Nutnerical

ewcriments. Acta Aslronautic a, 4 (1077)
pp L2O7 - L22L

[S] Miclrelson, D., Stead.y Solulions of the
K uramo to - S iu ashinsby E quatio n. P hysica
D, 19 (1986) pp 89 - 111.

[6] Marion, M. and Tbrnam, R., Nonlin-
ear Calerbin Methods. SIAM J. Nunrer.
Anal. ,  V 26, 5, (1989) pp 1139 - 1157.

[7] T]o11 W. C., Th,e Eristence of Stead,y
Solutiorw of the Kuramoto-Siuoshinsky
Equation. J. of DifL E9., 82, (1989), pp
269 - 313.

[8] Jolly, M. S., Kevrekidis, L G., Ap-
proximate Inertial Manitolds for tlrc
Kwamoto-Siuashinsky Dquation: Anal-
gsis and Computations, Physica D, 44
(1ee0) pp 38 - 60.

[9] Sinay, L., Analyti.cal Space-Periodic Solu-
tions of the Kuramoto-Siaoshinskg Equa-
tion. Proc. of the 2d Asian-Pacific lrr-
ternatioual Symposiurn on Combustion
and Energy Utilizatioìr, Beijing (1993)
pp 694 - 699.

[10] Crandal l ,M. G.,  Anlntroduct ionto Con-
str.uctiae Aspects ol Bilurcation and the
Impücit Fúnction I'ìrcorem. In Applica-
tions of Bifurcation Theory, P. H. Râ-
biuowitz Ed.,Acadernic Press, Inc.,Nerv
York, pp 1 - 35, 1977.


