5

v v

3rd Asié{Paciﬁc International Symposium on Combustion and Energy Utilization A9

Analytical Determination of One-dimensional Cellular

Structures in Flame Fronts

Leon Sinay

Combustion and Propulsion Laboratory - LCP
National Institute for Space Research - INPE

Rodovia Presidente Dutra, Km 40. 12630 — 000 Cachoeira Paulista - SP

Brazil

Abstract

The purpose of the present paper is to calculate, using modal decom -
position, constant - speed, space-periodic solutions of the Michelson -

Sivashinsky equation. We thus determine secondary bifurcation points
and the relationship between the flame velocity and the wave number.
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1 Introduction

Body-force, hydrodynamic and thermal-
diffusive effects are the three main phenomena
determining intrinsic instabilities of premixed,
plane flame fronts.

An stability analysis, in which body-forces
are neglected and the flame front is treated
as a discontinuity in density propagating with
constant velocity normal to itself, leads to
the well known result of unconditional insta-
bility [1]. The influence of thermal-diffusive
effects seem to have been first addressed by
Zel’dovich[2]. It is now a well established
fact that when the Lewis Number L. is less
than one, i.e., the reactant is strongly diffu-
sive, thermal-diffusive instability occurs.

Let 1), the width of the thermal structure of
the flame, V; the normal velocity of the flame
relative to the burnt gas, T} the adiabatic tem-
perature of the

combustion products, o the coeflicient of ther-
mal expansion of the gas (0 < 1) and R° the
universal gas constant, then, the behavior of
hydrodynamic instabilities caused by thermal
expansion of the gas and transport effects is
characterized by the solution of the Michelson-
Sivashinsky equation [3]
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of the flame front, ¢ is the dimensionless space
coordinates vector, both measured in units of
len, T is dimensionless time in units of Lin/ Ve
and

€= (Leo —Le)/(l S0 Leo) )
being L., the critical Lewis Number defined
by

L., =1-2/E(1-0).

E is here the dimensionless activation energy
in units of R%T}.

Numerical integration suggests that, un-
der suitable conditions, equation (1) possesses
space-periodic solutions travelling with con-
stant, non-zero velocity[4]. Several analytical
works also show that this is so in the partic-
ular case of the Kuramoto-Sivashinsky equa-
tion (¢ = 1) [5, 6, 7, 8, 9]. The purpose of the
present paper is to calculate constant-speed,
space-periodic solutions of the one-dimension
form of (1) using modal decomposition. In this
way, we determine the relationship existing be-
tween the flame velocity, wave-number and a
physical parameter X to be defined below.

Existence of constant-speed,
space - periodic solutions

Let us consider the one-dimension form of (1),
and let
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then, equation (1) is transformed into the
pair of one-parameter equations:
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where
A=2[1+¢|(1—0)/|el*?,

sgn is the signum function and f(z,1) is the
function obtained from f after the change of
variables . It is interesting to observe that
A~2/3 is the scaling factor of Le, — Le in the
derivation of (1) under the conditions £ — oo
and ¢ — 1 while E(1 — o) remains finite.

Let us now seek constant-speed, 2l—space-
periodic solutions of (2). In this case the inte-
gral in it can be replaced by the series

I[f]=%in(bncosz}lzz-i—cnsinflzz),

n=1

where

]
b, = bn(f)l) = %/f(é.’t)cos ?é.d{)
o
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The period of the sought solution can be fixed
equal to 27 setting k z = z, where k = 7 /l.We
thus obtain from (2)
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with gle) = flka), b = balg,7)

Cp = cn(g,7r).

It is evident that g = 0 is a solution of (3) for
all A and k. Linearizing the equation around
this solution we have
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where the dots on 0, and ¢, indicate the
coeflicients corresponding to ¢. Setting g =
exp(wt +iz) we get
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Hence,
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w=—kK" +sgn(e) K+ KA. (4)

One must observe in (4) that w = 0 implies
that either k =0 or

— k3 +sgn(e)k+ X1 =0. (5)

Let us analyze this last case. Simple algebraicé

manipulation of equations (4,5) shows that (4)
always possesses one and only one non-zero,
positive root. At it,

A= MXo(k) = k3—sgn(e)k

2 —sgn(e)).

= k(K
The root of (4) for € > 0 occurs only for xk > 1.
Since & and )\ are real so is w, therefore
for fixed A\, u = 0 is unstable if & < KF()),
where x££ ()\) are the roots of equation (5), cor-
responding the plus and minus signs to € > 0
and € < 0 respectively. One can then expect a
non-trivial, constant-speed, space-periodic so-
lution of (3) only in the unstable region. In
order to determine it we set

glz,1) = —pt + u(a),

u(z + 27) = u(z) V.

which yiclds
N‘luiu i sgn(E) rc2u"
(6)
+162(w)? =p+ Ayl

an equation which has a 2m —periodic solution
guaranteed by the bifurcation theorem [10].
We can thus expand it in its Fourier Series

oo

ula) = zﬁ.(p) cos pz. (7

p=1

with, so far, unknown coeflicients i(p).We
must observe that

b = bn(cospz) = bnp,
=t (cospa) =0,

hence, using (7) in (6),
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2
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Expanding the square and collecting har-

monics, we obtain the infinite system of al-
gebraic equations valid forn =1,2,...:

[(nr)* - sén(z—:) (nk)? —nk A a(n)

+1k%{2 ,?::1 n(n+ p)ﬁ.(p)ﬁ,(n + p)

- p‘; p(n—p)u(p)i(n—p)} =0
(9)

Summation with p from 1 to n — 1 in (9)
must be understood as zero when n. = 1.




Once (9) has been solved, y is determinedby
the formula

__1_200 2.0
p=3k I;P a*(p),

corresponding to the constant term of (8),
which can also be obtained by direct integra-
tion of both terms of equation (6) using the
periodicity of u(z) and Parseval’s equality, i.e.,
the velocity is the square of the L2 norm of the
solution’s gradient.

Any numerical method for solving a finite
truncation of (9) would require a, not at all
obvious, initial guess. However, one must ob-
serve that 4(n) =0Vn is a solution of (9)
for all £ and M. Linearizing around it we have
alsoforn=1,2,...:

[(nk)* —sgn(e) (nk)2 —n kA4 (n) =0

Since we want a fundamental period 27, then,
either 4'(n) = 0 Vn, or equation (5) must be
satisfied. Using regular perturbation methods
and bifurcation theory, one can seek solutions
of (9) in the form A = A(v), A(0) = Ao(k) =
k% — sgn(e) K, k fixed. Up to terms of order
o(v3), this procedure yields :
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Discussion of results and
conclusions :

We have implemented the algorithm described
in the previous section using ten modes, ob-
taining results for both & positive and neg-
ative, varying k from, respectively, 1.1 and
0.5 to 2.0 The procedure, started with an ap-
proximation obtained using a combination of
power series and Fourier series [9], converges
for each fixed k up to a maximum value of A,
which we shall denote by \,(k), as shown in
Figure 1. At this maximum, As(k) = A(2k)
and p(As(k)) = w(A(2k)) (Figure 2), while
the shapes of the flames fronts agree, result-
ing in a secondary bifurcation point, as exem-
plified in Figure 3, where we show the shapes
of the flames fronts for three different values
of A between the primary bifurcation point of
2k and As(k). The inner maximum of the
27 /k-periodic solution appears at a value of
A smaller than the one where the flame veloc-
ity p attains its maximum, evolving with in-
creasing A toward the same value of them. At
this point,the shapes of the w/k and 27 /k—
periodic solutions coincide when the former is
considered over two full periods.

Comparing Figures 2 and 3one must, observe
that if a gas is such that its constant \ is at
the critical value \;(k) for some k, a variation
in its physical properties, in such a way that
A varies to a value slightly lesser than As(k)
will make the flame to have one of two dif-
ferent configurations, travelling with different
velocities.

Whether the flame will present one or the
other configuration depends on the stability of
these solutions, an analysis that will be pre-
sented elsewere. Euristically, one should ex-
pect that the slower, and less corrugated flame
(the m/k-periodic solution has two maxima
and one minimum over a period and the 2w [ k-
periodic one has three maxima and two min-
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Figure 1: Flame velocity p as a function of A at
the secondary bifurcation points. k varies from
1.1 and 0.5 to 2.0 for & positive and negative
respectively.

ima over its period) will be the stable one and
therefore, the only one of possible physical re-
alization.

We have introduced in this paper a param-
eter A which summarizes the physical prop-
erties of a gas mixture, and determined the
dependence of the periodic solutions of the

one dimensional Michelson-Sivashinsky equa-

tion on A, as well as the dependence of the pri-
mary, secondary bifurcation points and the the
flame velocity on this parameter. Although, as
said before, the physical properties of the gas
mixture are summarized by A, it is not enough
to fully describe the periodic solutions of (3)
because they are quantitatively and qualita-
tively different for positive and negative €, a
fact that should be expected, since they cor-

Figure 2: Response curves of the flame velocity
1 as a function of A for k = 1.5 and k = 3.0,
positive and negative €.

respond to Lewis numbers greater and smaller
than the critical Lewis Number.

We have not exausted in this article all
the possible investigations on the one dimen-
sional Michelson-Sivashinsky equation and
much work remains to be done. For exam-
ple, the relationships between the findings here
and the stretching and curvature of the flame
remains to be studied, a research for which,
we believe, the algorithm of modal decompo-
sitions will be suitable.
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Figure 3: Flame shapes for & = 1.5 and k = (9]

3.0, positive €. Of both curves with the same
symbol, the upper one corresponds to k = 1.5.
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