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MINIMIZATION OF WEAR DOWN OF RAILWAY'S CURVES WITH STRAIGHT RAMPS

Marcelo P. Klein*
Leon Sinay**

Railway's lay-outs are, in general, formed by straight lines,
matched by circular curves, and transition segments consisting of variying
curvature curves. The goal of these transition segments <is to avoid bumps
that, otherwise, would occur between the weel's brim and the inner face of the
rail's head as trains pass from the straight to the circular part.

When a body moves along a curved path, it is subjected to a
centrifugal acceleration, which depends on the body's velocity. This
acceleration can be counterbalanced by a lateral slant of the path which, 1in
railways, is obtained by rising the outer rail.

Since, in practice, several kinds of trains use the same railway,
the 1ifting of the rail which is adequade for one kind may not be for others,
and therefore, wearing-down of the rail is not avoided.

The purpose of this paper is to show that wear-down of the outer
rail of curves with straight ramps can be minimized using Operation Research
techniques. The wear-down problem is equated from physical laws, and the

wear-down is minimized using Fibonacci's method, programmed for a microcomputer.
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1. INTRODUCTION

Railway's lay-outs are formed by straight lines matched by curved
arcs. Due to its simplicity, circular curves are being used to design this
matching arcs since long ago. Fig. 1 shows two straight Tines AB and CD with
intersection at P, matched by a circular curve of radius R. In the technical
language of road engineering, the lines AB and CD are called tangents.
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Matching by circular curves presents two disadvantages: the
dificulty in distributing smoothly the rise of the outer rail, and the bump
between the wheels' brims and the inner face of the rail's head, which takes
place at the entrance and exit of curves, and due to the fact that the change
from the straight line to the circular curve is so sudden that it does not
give time to the bogey to reach its right position. It is then necessary to
include in the lay-out a transition stretch which makes. the matching smooth.
This is done introducing a varying curve between the straight and circular
parts of the railway. Two typical transition curves are cornu's spiral and the
cubic parabola. Brazilian federal laws for railways do not make the use of
either one mandatory, however, according to Pacheco de Carvalho [1], it is used
the spiral rather than the parabola in the few railways with transition in the

country.

Going through a curve, the wagon is subjected to gravity and the
centrifugal acceleration (which, it is well known, depends on the train's
velocity and curve's curvature). The component of the sum of both, in the
direction of the sleepers, can be anhilated by the leaning of the wagon due to



rise of the outer rail with respect to the inner one. Such a difference in the

levels, called superelevation, must obey certain limits, fixed according with

the speeds of the trains that travel on the railway.

In the circular part of the railway, the norm of the acceleration
is constant (considering the train's speed constant), therefore, the
superelevation must also be constant and obviously positive. Since in the
straight part of the railway the superelevation is zero, the transition curve
is used to vary the superelevation from zero at the meeting point of the
transition with the tangent, to the value corresponding to the circular section

at the other end.

The stretch which varies from zero to the value corresponding to
the circular part is called the ramp. When the curve is used for trains that
can travel all with the same speed, the superelevation's value can be
determined (in the circular part) as the one which eliminates the effects of
the transverse acceleration (in the sleeper's direction). This superelevation
is called theoretical superelevation, and can not be used if the railway is
utilized for trains with different speeds. If, for example, the theoretical
supere]évation is determined using the fastest train, then, the slower trains
suffer an acce]eratioh :toward the interior of the curve, over-wearing the
inner rail. According to Coelho [2], the curve's wear-down is the main reason
for substitution of rails in allworld's railways. This paper's goal is to show
a method which permits to determine the superelevation which gives a minimum
wear-down in the wheels and rails in the whole curve (ramps and circular
sections).
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2. CORNU'S SPIRAL PROPERTIES

Let us consider the particular case in which the horizontal
projection of the ramp is the transition curve. If this is a cornu's spiral
and at each point the slope is proportional to the distance from the ramp's
origin up to the point, then the ramp can be mathematically described in the

parametric form by
RE) = {ult), plt), 2it)) (1)

with



a ces t dt s1n~f_ e (2)
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x(t) =

z(s(t)) = m.s(t) (3)

where a and m are adequated constants and s is the curve's arc-length. The arc-
length's differential is given by

e n Ced oyt + (20 T @ () = e,

and therefore, using (2),

Substituting s in (3) by (4) and differentiating with respect to t, we have

e : m2a2
2(1-m2)t

from which it follows that

z(t) = A2k /.
v 1-m?

and

s e . (5)
v kEme :

We can express (1) as a function of the arc length s, using (5)
results in




W e cos £ ¢ 8 sin t .
Y2 Y T e VT
0 0
s s
= (V& ac cos(ct)? dt, Y2 ac sin(ct)z dt, ms) (6)
0 0
where
£ v1-m2
/2. a

When the train's speed is constant alon. the ramp, the vector
d2X/ds2 is in the plane perpendicular to the curve's tangent vector. It follows
from (6) that such vector is horizontal because

44X _ 2/% ac3s(-sin(cs)?, cos(cs)z, 0).

ds?
Conversely, if X(s) is a differentiable curve in R*, s is its

arc-length and d2z/ds? = 0, thenvthere exist constants m and b such that
z=ms+b. Since s is the arc length, we have that

dx, 2 dy.* dz)2 - (dx)2 E (dy)2

1= (ag) * (ds) + (ag' S + m?

ds
then, |m|§1 and dx/ds, dy/ds satisfy the circunference's equation
dx,2 dy,2

(ag' + (Hg)

We can then conclude that there exists a function ¢(s) such that




%% = r sin ¢(s)

and therefore

(S
x(s) = r cos ¢(s) ds

0

x (7)
gis) = r sin ¢(s) ds

70

Comparing (6) with (7) we can see that the projection (x(s),y(s))
is what we could call a generalized cornu's spiral.

3. TRANSVERSE ACCELERATION

Accelerations acting on a wagon at a point of the curve are
represented in Fig. 2 (assuming the speed constant and equal to v).

Fig. ¢

angle due to the superelevation

superelevation (mm)

gauge




radius of curvature at the studied point (m)

p:
F = acceleration (m/s?)
g = gravity
V = train’s speed (km/h)
v = transverse acceleration (m/s2)
Then
y=Fr-9;= Fcos a-gsina= (F-g tan a) cos o
Since o« is small, we can approximate cos a by 1, thus
2
o SRR TR (8)
13p b
4. CURVATURE AT EACH POINT OF THE CURVE
a) Aleng the circular section of radius R, it is obvious that the curvature k
is constant and equal to 1/R.
b) We shall analise only straight ramps in this work, that i1s, those

satisfying condition (3) with m = hc/lc, where hC = superelevation of the

circular section and_lC = length of the ramp from the point of tangence

with the straight rail to the meeting point with the circular section, we

shail first determine, for this kind of ramps, the equation {t)=(x(t),y(t),
z(t)) of the curve determined by the outer rail of the ramp. We saw in the
previous section that the projectioﬁ of this part of the rail is a cornu's
spiral. Let then X(t) = (x(t), y(t), z(t) be the ramp's equation, with

x(t), y(t) given by the (2). We then have that the arc-length s(t) is, for
each value of t, given by (5). Thus, using (6) we obtain.

X'(s) = @jljléLlﬁél.tms),é_éiﬂ_fiél.tr(s)’ hole ),
.2 Etis) 7 2 tls) S

but, from (5) we have that

1-m2 22c 3 h2c
t(s) = (zag )s2 = ————— s%, g
2a22,2C




( . )l/z ( . )1/2 .
g2 o R g2 . he
') = e ©)  cos t(s), ——= win #68), == ),
L & L
c &
and therefore
S
B LD
X"(s) = (2 C h c) s (-50n tls), cos £le), O},
3
az ¢ ¥
Thus, the curvature k(s) at each point of the ramp is
(8~ h? ]
k(s) = [X"(s)] = £ = 5 (8)
a2 23C

At the meeting pont of this curve with the circular section we must have

(g2 - h? )

}c(zc) % Cz 2 R -
ae=y - R
from where
3/2
R(zzC = hzc)

e : S : ,(9)
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Substituting a2 in (8) by this value, we finally obtain

AT e | | (10)

5. WEAR-DOWN OF THE RAILS AND WHEELS

, According to Novaes [3], practical experience shows that the
wear-down of the wheels' brims and rails along curves is a function of:



I - transverse acceleration at the curve,
II - average gross-weight (by anis),
III - number of train passages by unit time.

Using the formula for the wear-down of the circular section
given in Novaes [3], and the term corresponding to the ramp, we have that the

wear-down function for the whole curve is

&
e M : M
D(h.) = 2 [ K 121 WTi.NTilyi(s)lds + KL 1_21 WT1..NT1.|Y1.| =
0
M o , M
=2 K ] WI.NT, lv;(s)[ds + KL ) WT, NT. |v; |

= 0 =1

where:

WTi = i-type train's gross-weight.

total number of i-type trains using the given tracks in a year.

n

NT.
]

Yi(s) = i-type train's transverse acceleration, on the ramp, at the point where

the arc length is s.
vy = i-type train's transverse acceleration at the circular section.
K = proportionality constant.
L = length of the circular section.
M = number of trains being considered.

Since the superelevation of the ramp is h = z(s) = hcs/SLC and in

the circular section it is hC we obtain from (8)

Y.i(s) =




and

v, he
i b
Hence,
2 e
v, h v,
D(h.) = 2K z WT..NT, | 1~——7(- 9.81 ~—T;-| st o Z W oNT, | - -
i= 2 9 13R
ST 4 V. he
- 9.81 — | = K(z_+L) Z WT, NT, | —— - 9.81 —C | (11)
b i=] 13R b

According to Schramm [4], the following restrictions must be
obeyed for dinamical stability and confort conditions:

-0.98 (m/s2) < yi(S), ¥i < 0.65 (m/s2).

Also according to Schramm [4], zc is a function of the train's
speed and of the superelevation. For each kind of train, we have

0.01 ¥, h_ if V.240 km/h
£ =SL__= 7 (12)
! 0.4 h_ if V.<40 km/h

Since we must use only one value of L for all kind of trains
considered in Equation (11), we shall choose for -each given h. the largest %
among the M values given by (12).

6. CONCLUSIONS
Considering the wear-down .formula (11), we obtain the optimal
value for the superelevation, which is defined as the one value which minimizes

D(hc), obeyed the aforementioned restrictions on Yi(s) and Y

The examples in Section 8 show : how " such values can be
determined using the enclosed computer code.
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It can be observed that the method we used permits to obtain
conclusions about the interdependence between the superelevation and the

other railway parameters.

7. FINAL REMARKS

1 - If instead of considering the cornu's spiral as the transition curve
(given by Equation (2)), we take a generic curve (x(t), y(t)) and the
corresponding straight ramp, the formula for the transverse acceleration,

analog to (9), is

2 -
v(s) = —¥§ r| ¢'(s)f-9,81 —%—

and it is then possible to extend the results of the present paper.

2 - Taking into consideration the development of microcomputers we believe
that implementation of computer programs, like the one enclosed in this
paper, as tools for field work can be of great help to engineers.

3 - Formula (11) is similar to the one determined by Novaes [3] for the case
of the circular section (2C=0 m (11)), however, in the present article,
2. depends on hC in a non-linear fashion. :

11



s. EXAMPLES

ot imizacao por busca direta - metodo de fibonzacci
sohrelevacac para minimo desgaste

raio da curva 600 angulo 45
comprimento do trecho circular 4741.24 m
sobrelevacao recomendada 79.2779 mm
comprimento da rampa 70.0937 m
velocidade maxima  92.4432 kwm/h

trem — tipo © minerin (carrecgado)

quant id=zade 5
peso bruto 12006

trens = bipo

freen = tipo

weldt i masineawe projeto 25
vel, mayrina na curva 495

minerio (vazio)

quant idade 45

peso hruto 2500

vel. maxima de projeto 62
vel., maginag na curva 469

carga diversa

quant idade 120

peso bruto 6000

vel. maxima de projeto 469
vel. maxima na curva 60

trem — tipo ! carga diversa

quantidade 146

reeo bruto 3060

vel., maxina de projeto 7@
vel

. mMAMIimA na curva 79
trem — tipo ! paszsageiro

quantidade 90

peso hruto 100

vel. maxima de projeto 14190
vel. maxima na curva @I A182



trem

trem

trem

tipo

tipo

tipo

tipo

tipa

pascagciro

quant idade
peso bruto

vel. maxima
vel. maxima

pPass’ag. rap

quant idade
peso bruto
vel. maxina
vel.o maxima

=
ni
mn
m
bl
¥a]
'

gquant idade

re«o bruto
vel. maxima
vel. maxdina
carvan

quant idade

peso bruto
vel. maiina
vel. maxima

CREA AN

quant idade
reso bruto
vel. maxima
wel. maring

13

g0
1200
gde praogeto 110

et cnpva 923.1132

ido

&0
500
de
na

149
Vo1 132

projeto
Curva

v ido

40

4500

de projeto
na curva

146
casles Ry

(carregado)

i10

5000

de projeto
na curva

40
40 2

fuario)

ii@

170@

de projeto
na CUurva

76
79
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REM wvercsao final rodando em 25/046/36

DIM WT(2@),NT(39),V(30),VV(3e),R(30),Z%(32),L.C(29),

REM gosub 10000
READ TLTY
PFAD GAMAL, FhMAr:»MnX B, MR
INPUT ALFA
FOR I=1 TO NR
READ R(I)
LONCI)=21%3.44146%R (1) *ALFA/360!
NEXT I
READ N
IF N{(=9 THEN 440
FOR 1I=4 TO N
READ WT(I),NTCI), U(I) 2%
NEXT I
FOR K=41 TO NR
RR=R CI0)
[L=LONCK)
GOSUE 450
X=H
GOSUR 640
XDUM = @!
FOR: Imd. TO N
IF XDUM »=VUV(IY THEN 24¢
XDUM=UV(I)
NEXT I
LPRINT TLTS:LPRINT:LFRINT

LPRINT “scbrelevacan para minimo dESS“btP PR ENTES IPPINT

LVPRINT s raio da curva iRRi angulo ;ALFA
LPRINT ~comprimento do trecho circular ";LL;" m'
LPRINT “sobrelevacao recomendada’iH; mm’

LPRINT "comprimento da rampa ~iMAX; ™ m°

LOMCE2)

LPRINT 'velocidade_maxima ‘;XDUM;'km/h':LPRINTZLPRINT

AE="

FOR I=41 TQ N v

LRRINT drem = tipo o 259010 DPRINTCLPRINT
LRRINE AT T wrant idade SNTCL)

LERINT A% "peso bruloa " i4TC1)

e s enT: T eel . manime e projcto NI

LPRINT a%; "vel. maima na curva " GUWD) TLPRIMTLPRINT

iy I
NEXT K
GOTO 1i1ie
END-
Si=a!
SHAX
=.618
FOR I=4 TO 20
Xi=611-F)*(52-51)+51
X2=Fx(52-51)+51 :
X=X1
GOSUB 449
ORJL=DESG
X=X2
GOSUE &4¢
0B J2=DESG

15



7@ IF 0OBJ4 »0BJ2 THEN 40606
580 S2=X2
590 GOTO &i@
400 Si=X1
642 NEXT I
620 H=(51+52) /2!
530 RETURN
4540 DESG=51
65% FOR L=4 TO N
540 BAMA=(V(L)~2/(131%RR))I-9.81#X/B
4L£70 IF GaAMA {=0AMAZ THEN 700
480 GAMA=GAMAZ -
&7 GUTO 722
760 IF GAHMAY>=GAMAL THEN 729
7106 GAMA=GAMAL
720 GAMA=ABS (GANMA)
720 DESG=DESG+WT (L) *#NT (L) xGAMA
740 HEXT L
750 GOSUUB 786
760 DESG=DESGx (LL+MAX)
77¢ RETURN
7806 MaX=0!
790 FQP J=1 70O N
29 GH=(U( )2 /{31 XRR ) I=P .81 %X /B
210 IF GA <{=5AMA2 THEN 646
B2o GA=GAMAZ
B3¢ GOTO B4
840 IF GA »>=GAMAL THEN 840
8506 GA=GAMAL
2460 YW(J)=SQR ((GA+2.81*X/B)*41{31%RR)
8706 IF UJ(I){=401 THEN 20&
g0 LR(MND=.01xVV(J)xX
292 G3T0 210
900 ILR{J)=.4xX
‘240 IF LR(JI{=MAX THEN ?3¢
920 THMAX=LR(J)
93¢ NEXT J
240 RETURN
256 DATA "ot imizacao por busca direta - metodo de fibonacci’
946G DATA —.98, .65,180.,1400¢.,4
2?79 DATA &00.
¢330 DATAH BGG.
‘990 DATA 1909¢.
1090 DATAH 120¢.
i21@ DATA 10
1902¢ DATA 12006.,45,45., minerio (carveaado)’
1030 DATA 2900 . 45,460, ninerino (vazion) -
1040 DATA 6000.,120,60., carga diversa
1050 DATA 23000.,140,70., carga diversa’
- 10460 DATA 19000.,990,4119., passageiro’
1070 DATA 1200.,90,4i6., passageiro’
1080 DATA 560.,60,140., passag. rapido’
1090 DATA 40@Q.,40,14¢., passag. rapido”
1160 DATA 8000.,119,60., carvao (carregado)’
1510 DATA 1700,1410,70., carvao (vazio)®
120 Dok —1 -
4439 RETURN
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