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Abstract. In this work we determine explicit formulas which give the asymptotic distance between

transition curves A% (g), bifurcating from A = m2, X\ = m2w?, m a positive integer, in the A — £ plane,
p 1

along which there exist bounded solutions of the quasi-periodic Mathieu’s equation
Z+ (A4 e (cost + coswt))z = 0.
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1. Introduction. Mathieu’s equation

A
5

generally associated with the problem of stability of many physical phenomena, is a
well known subject on which there exists a vast literature (1],[2],[3]. The properties of
its solutions can easily be described applying Floquet’s theory and, in particular, those
of the transition curves A = A(e) which separate regions in the A\ — ¢ plane where all the
solutions are bounded from those where there is at least an unbounded one. A rather
simple modification of (1), in which coswt, w irrational, is added to the driving term,
leads to the quasi-periodic Mathieu’s equation

(1) I+ (A+ecost)r =0, 0

(2) ji+(/\+e(cost+coswt))z =0,

In a recent article of this journal[4], Zounes and Rand discuss the transition curves of
(2), giving some analytical as well as numerical results. The purpose of the present
work is to give an explicit, asymptotic formula for the distance between the curves
corresponding to the normalized solutions which bifurcate from the points A = m? and
A=m2w?m>1 integer, when € = 0. Here we employ a combination of power series
and Fourier series, a method already utilized by Levy and Keller for the Mathieu’s
equation(5], reducing the problem of solving the differential equation to a sequence of
linear algebraic ones, a devise which allows us to explicitly find the asymptotic distance
between the curves.

2. Power series-Fourier series solution. When ¢ = 0, the solutions of (2)
with period 27/m and 27/mw, m a positive integer, satisfying z(0) = 1,%(0) = 0 and
z(0) = 0,z(0) = 1, are cosmt (sinmt) and cosmwt (sinmwt) provided A takes on,
respectively, the values A = \g = m? and A = Ay = m?w?. The goal of our investigation
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is to determine curves A = A(e) on which (2) posseses bounded solutions and
distance between them. To that end,we shall consider first the case Ay = m2. In or
to find an asymptotic solution of (2), we use the regular perturbation method|6], setti

(3) Bt) =00 mlte
n=0
A= Z/\:t Z /\0 m?
n=0

Here, the superscript + will differentiate the even from the odd solutions. Substituting
z(t) and A in (2) by (3), collecting powers of € and equating their coefficients to zero
we obtain:

(4) dE e miet =
n
(5) 5 -i—'mza:i = —Z)\;txf_j—(cost+coswt)mf_1.
j=1
Let
zg(t) = cosmt,
@y tt) = sinmi.

Several properties of the solutions of (5) can easily be deduced from the structure of
the equation itself, namely:

1. Being )\i constant in the first term of the right hand-side, the corresponding
partlcula.r solution is of the same type the z . ; are. l.e., it is a sum of the same
harmonic functlons which define a: but with, possibly, different coefficients.

2. The product of z=_, by cost + cos wt adds and subtracts 1 and w to the har-
monics of :rn_l,but not both at the same time. For example, the product
(cost + coswt) xg contains terms of the form cos(m + 1)t and cos(m + w)t,
and therefore so does the solution z7. It is also illustrative to see what hap-
pens when n = 2, i.e., with the product of zi. In this case, the additions
and subtractions have two main effects, on one hand one has cos(m + 1 + w)t
(cos(m — 1 £+ w)t), on the other hand, cos(m + w + w)t (cos(m — w + w)t).
Applying this reasoning recursively, it follows that z;(t) is a sum of terms of
two different forms: cospt and cos(qw +1), p,q,leZ. Although the subtractions
may generate negative coefficients of w, one can always make them positive,
changing ! by —I. Evidently that proper care of the signum must be taken in
the case of z ().

3. It follows from the discussion in the previous item, that the integers p, q and [

 satisfy max(0,m—n) <p<m+n, || <m+n, 1<g<n.




The immediate consequence of the properties above is that we can write.

m+4n n m+n
it = 5 it (p) cospt + B s l) cos(qw + I)t,
(6)
m+n = ; n m+n 5 ]
g lli= 5 U, (p)sinpt + 3 3 U (g, 1) sin(qu + 0)¢.
p=1 q=1|ii=o

Since the operator on the left-hand-side of equation (4) has a non-triviaj kernel, the

solutions of (5) are not unique. In order to solve this indeterminacy, we shall impose
the condition :

(F. UE(m) = 6,

where 6,9 is the Kronecker delta.
Substituting zE(t) in (5) by (6) and equating like harmonics, we obtain

e |
®) O =3 Mnny(0) - 20t 1)~ Lot ),
g=1
- n 5 1 = "
) [m*-p?atp) = - LNEL0) - 5[4k 10— 1) + a2 (p s 1)]
j=1
I 1 ¢ =
~3 1008 — 2 [65,(1,p) £ 0% (1, -n)],
1) [m— (qw+ 07 ox(g1) = D_NE (q,0)

_i [(1+ 1) + (1 F 1)sgn(1)] a1 (1),

3 Bt =1+ 0.0+ 1]
1

=5 5 [53—1(‘] o l,l) E 17,?_1(51 % l,l)J .

Choosing p = m in (9) and using (7) we have:

(1) X = =2 [a2 (m— 1)+ a% (< D] - 5 [ m) £ a2 0 ~m)].
2.1. The distance between transition curves,
LEMMA 1. Ifn<m then:
a) &t (p) = 47 (p)¥p > 0,
b) e, l) = dox(e,0) Veifiso,
0(e,0) = —i7(g,0) Vgifi< 0,
>



g] Al = A

Proof. The lemma is trivially true for n = 0 because Uy (p) = g (
Uon(g, 1) = OVg,l and A\ = \y = m2.

Let us suppose it is also true up to some n = k < m — | then
in (11): #f(m +1) = 27 (m £ 1) and from item 3 in page 2 §;
therefore A, ; = A, ,. This and the assumption, using (
order to prove the properties of ﬁfﬂ (g,1) we observe in (10) that. due to the assumption,
they are automatically satisfied when g#land! > 1orl < —1. In the cases g £ 1,
[ =0, —1 we have that the first term as well as the last four terms in the right-hand-side
of (10) are zero because max(0,m—k) = m—k > 1 and the second term is zero because
bqp =0.Ifg=1and!>1orl < —1 the results is again immediate. If [ = 0 then

E(1,-1) =0 resulting in 9},,(1,0) = 9;,,(1,0). If L = —1, all but the second term are
automatically zero, the right-hand-side of (10) is thus reduced to

(1, 2m) = g (1, £m),
9), imply @, ,(p) = 4z, (p). In

1 -
— [0+~ @ F18),
which proves the lemma.O

A first difference in the coefficients appears, besides the sign when | < 0, when
n = m. Namely, 4, (0) = 0 while @} (0) is not necessarily zero. It is not difficult to
prove by induction that this difference propagates in the values of % and ¥ from n =
and n = m + 1 respectively. They will only affect A* when they reach p=m -1
equation (11)) that is, when n = 2m because gl
it is, different from g, _;(m — 1)

m

(see
m—1) might be, and we shall prove

If follows from the above reasoning and equation (11) that

1 o
(12) /\2_m = ’\;m = —5 [ﬁ’Z_m—](m == 1) T 17‘3_771—1(7” = 1.” .

Using equation (9) we obtain:
[ﬂz_m—k(m — k) — 43, _y(m — k)] =
1 o B
C2[m2 = (m— k)7 [u2m—(k+1)(m — b+ 1)) -5, pqy(m— (k+ 1))] )

and therefore

; : Ly 1
a1~ st =1) = (5)" T () )~ aa0)
(13)

It also follows from (9) with n = m + 1 that

(1) s (1) = s (1) = 5% (0),

and from (8):

P) = bpm, U5 (g,1) =

forn = k+1, we have

(17)

which is
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It is
correspo
imation.
type, bu

3.
two typ!
in both
employe
and acc
matrices
detemin
solution
propert:

Mu
formula

4.
was Vvis
RJ, Bre
Counci



15 @ (0) = ~ 55 m1(1).

Once again, using (9)

. P e
Tntk) = = ey (b + 1)
nus
1 m—1m—1 1
5) PR g S

Putting together equations (12)-(16):

1 2m—1
17) )‘Q_m_/\;m:_<_) ( -

2 2m — 1)12°

which is the desired formula. _
The case Ay = m2w? can be treated in a form completely analogous. We shall not
repeat here the procedure, limiting ourselves to merely stating the final result
- 1 2m—1 i
/\2m = )‘;—m = < ) (

2w? o2m — )12’

Q0

It is interesting to observe that when Ao = m?, the zero-th order approximation
-orresponds to a non-zero 4 coefficients and the ones appear at the first order approx-
nnation. In contraposition, in this second case, the zero-th order approximation is of 4
type, but the 4's are zero up to order m — 1.

3. Discussion of results and conclusions. We have determined formulas for
two types of solutions which bifurcate from Ao = m? and \; = m2w?, proving that
in both cases the distance from the transition curves is of order 2m in . The method
employed, at least for these special solutions is, from the computational view-point, fast
and accurate, making unnecessary to deal with small divisors or determinants of infinite
matrices. In fact, the recursive system of equations (8-11) can be used not only for the
detemination of the width of the instability regions, but for actually finding asymptotic
solutions of (2) to any desired order of approximation, giving also insight on different
properties of the Fourier coefficients.

Much work remains to be done, for example, it would be desirable to extend the
formulas to the more general form Ao = (my + mow)?/4, my, myeZ,
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