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Abstract. We model a single orbit satellite constellation with six satellites as a 

continuous time Markov chain (CTMC). Earth-fixed constellations and 

constellations with handoffs are considered. The models developed are based 

on Zaim et al.(2002)´s  models. 

Markov processes have been used to model satellite constellations [Usaha and Barria 

2002], [Zaim et al. 2002]. The basic property of a Markov process [Çinlar 1975] is that 

its future behavior is conditionally independent of its past, provided that its present state 

is known. 

We consider a single orbit satellite constellation with six satellites as shown in Figure 1.  

 

Figure 1. Six satellites in a single orbit 

In this system, we assume that call requests arrive at each satellite according to a 

Poisson process with rate λ, and the call holding times are exponentially distributed with 

rate µ. Therefore, it is possible to model it as a continuous time Markov chain (CTMC) 

following the proposal of [Zaim et al. 2002]. Satellites communicate directly with each 

other by line of sight using inter-satellite links (ISL). The connection between the earth 

and the satellite is called “up-and-down link”, UDL. Each satellite i has the capacity to 

support up to CUDL i-i bidirectional calls in the connections of type UDL, and CISL
 
i-j 

bidirectional calls in the connections of type ISL with satellite j. In this system, we 

consider that a call originated at satellite 1 and terminated at satellite 4 is routed through 

satellites 2 and 3, a call originated at satellite 2 and terminated at satellite 5 is routed 

through satellites 1 and 6, a call originated at satellite 3 and terminated at satellite 6 is 

routed through satellites 1 and 2, and, for all the others connections, the shortest-path 

routing. 



  

Let nij be a random variable representing the number of active bidirectional calls 

between satellite i and satellite j, 1 ≤ i ≤ j ≤ 6, regardless whether the calls originated in 

satellite i or j. Notice that nii represents the number of calls between two customers 

under satellite i, and two bidirectional UDL channels are used. The six-satellite system 

of Figure 1 can be described by a 21-dimensional CTMC. The set of all possible states 

of this CTMC is given by: 

E={ (n11, n12, n13, n14, n15, n16, n22, n23, n24, n25, n26, n33, n34, n35, n36, n44, n45, n46, n55, n56, n66,) / 

  nij ∈ ℵ for all i, j; 

2n11 +   n12 +   n13 +   n14 +   n15 +   n16    ≤ CUDL; 

  n12 + 2n22 +   n23 +   n24 +   n25 +   n26     ≤ CUDL; 

  n13 +   n23 + 2n33 +   n34 +   n35 +   n36     ≤ CUDL; 

  n14 +   n24 +   n34 + 2n44 +   n45 +   n46     ≤ CUDL; 

  n15 +   n25 +   n35 +   n45 + 2n55 +   n56     ≤ CUDL; 

  n16 +   n26 +   n36 +   n46 +   n56 + 2n66     ≤ CUDL; 

  n12 +   n13 +   n14 +   n25 +   n26 +   n36      ≤ CISL; 

  n13 +   n14 +   n23 +   n24 +   n36               ≤ CISL ; 

  n14 +   n24 +   n34 +   n35                          ≤ CISL; 

  n35 +   n45 +   n46                                     ≤ CISL; 

  n15 +   n25 +   n46 +   n56                          ≤ CISL; 

  n15 +   n16 +   n25 +   n26 +   n36               ≤ CISL  }. 

Let λij denotes the arrival rate of calls, and  1/ µij  the mean holding time of calls between 

satellites i and j. Then, the state transition rates r(e, ê) from the current state e∈E to the 

next state ê∈E for this CTMC are given by: 

• r(e, ê) = λij, ∀ i, j, if the transition is due to the arrival of a call between satellites 

i and j. In this case, ê is equal to e, except in the position that corresponds to the 

element nij, that is increased by one; 

• r(e, ê) = nij µij , ∀ i, j, nij > 0,  if the transition is due to the termination of a call 

between satellites i and j. In this case, ê is equal to e, except in the position that 

corresponds to the element nij, that is decreased by one. 

If the satellites are not fixed in the sky, the same transition rates presented previously 

plus additional transition rates to account for the handoffs are considered. These 

transition rates are:  

• r(e, ê) = α nij , where α is a constant that depends on the shape of the earth’s 
surface coverage area of the satellite and the satellite’s speed. α nij is the rate at 
which calls experience a handoff from satellite i to satellite j that follows it In 

this case, ê is equal to e, except in the position that corresponds to the element 

nij, that is decreased by one, due to the call that was handed off, and in  the 

position of the satellite that receives this call, that is increased by one; 

• r(e, ê) = 2α nii , where both customers are served by the same satellite. In this 
case, e is equal to ê, except in the position that corresponds to the element nii, 

that is decreased by one, and in the position of the satellite that receives a call, 

that is increased by one. 



  

The total arrival rate of calls between satellites i and j will include new calls arriving at 

a rate λij and handoff calls, arriving at an appropriate rate. Similarly, the total departure 

rate of calls between satellite i and j will include termination at rate nijµij and handoff 

calls (at an appropriate rate). 

With these models, we can obtain several performance measures. For instance, the 

system’s call blocking probability is given by 
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state e and 1ij is a vector with zeros for all random variables except random variable nij, 

which it is 1.  

Considering a numerical example of six satellites constellation, with CISL = CUDL = 3, 

µij = 2, λij = 0.1, 1 ≤ i ≤ j ≤ 6. The blocking probabilities are given in Table 1 for 
different values of α. We can observe that, in a Geostationary orbit constellation, that is 

α = 0, the system’s call blocking probability is smaller than in orbits where the calls 

experience handoffs (α > 0). 

Table 1. Call blocking probabilities for 6 satellites, CISL=CUDL=3, µij=2, λλλλij=0.1 

α Call Blocking Probability 

0.00 0.0371 

0.25 0.0702 

0.50 0.1023 

0.75 0.1327 

1.00 0.1609 
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