
Automating Inspection of Natural Language Requirements
and Model-Based Testing

Valdivino Santiago1, Nandamudi L. Vijaykumar1, 2, José Demísio S. da Silva1, 2

1Post-Graduate Program in Applied Computing (CAP)

 2Associated Laboratory of Computing and Applied Mathematics (LAC)

National Institute for Space Research (INPE)
São José dos Campos – SP, BRAZIL

valdivino@das.inpe.br, vijay@lac.inpe.br, demisio@lac.inpe.br

Abstract. Inspection and testing play important roles towards software
quality. However, both tasks are usually time-consuming specially if one
considers complex projects. Requirements are a valuable starting point for the
development of software products, and most of software requirements
specifications are still written in natural language. This paper presents a
methodology to address the automation of both the analysis of natural
language specifications and Model-Based Testing. The goals are to
automatically detect problems in natural language requirements, like
ambiguity, inconsistency, and incompleteness, and to translate such
requirements into behavioral models to support automated testing.

1. Introduction

Software Quality Assurance involves several activities like planning, measurement,
configuration management, walkthroughs, inspection and testing. Inspection is an
example of static analysis technique where there is no need to execute the program. It
relies on visual examination of deliverables like Software Requirements Specifications
(SRSs), Design Documents and source code. Being one the first artifacts produced
within the software development lifecycle, a well elaborated SRS usually leads to a
smooth development process because designers, programmers, testing teams base their
actions on a reliable source of information. However, incomplete, contradictory and
ambiguous specifications may cause many mistakes during the development.

Formal methods may be used to express requirements, but they require high
expertise and, hence, they are not very common in industrial practice. Unified Modeling
Language (UML) use case models are an alternative. However, it is usual that
requirements expressed in Natural Language (NL) are the basis for deriving use case
specifications in a UML-based software development approach. Furthermore, use case
models are often associated with a textual description narrating the behavior through a
sequence of actor-system interactions (SINHA et al., 2007). The bottom line is that NL
is still the most common approach to express software requirements in practice (MICH
et al., 2004). Unfortunately, serious shortcomings exist if a specification is written in
NL, making a document unclear, and this impacts on the next artifacts produced within
the software development lifecycle.

Test automation is a reality, however, human factor is still very present within a

test process. For instance, following a Model-Based Testing (MBT) (EL-FAR;
WHITTAKER, 2001) approach, an enviroment may automatically create test cases, but
one shall derive behavioral models to be the basis for such enviroment to do its job.
Considering system and acceptance testing, where the entire software must be modeled,
a test designer should first identify scenarios and develop several models to cover them
and, then a Model-based tool can be used for test case generation. These manual
activities accomplished by a test designer are usually time-consuming.

This paper presents a methodology to address the automation of both the analysis
(a particular type of inspection) of NL specifications and MBT. The goals are to
automatically detect defects in NL requirements, like ambiguity, inconsistency, and
incompleteness, and to translate such requirements into behavioral models to support
the automation of system and acceptance testing. Description Logics will be used to
support both activities (NARDI; BRACHMAN, 2003).

2. Natural Language Specifications

According to a recent survey, 95% of the requirements documents found in industry are
written in common (79%) or structured (16%) natural language (MICH et al., 2004).
There is a lack of methodologies and tools for NL requirements analysis. This section
presents some approaches addressing this issue, such as the Quality Analyzer for
Requirements Specification (QuARS) tool (GNESI et al., 2005). QuARS was developed
based on a quality model for the expressiveness property (mainly ambiguity and poor
readability). QuARS seems to be a scalable tool, however, the analysis it performs is
limited to syntax-related issues of NL requirements documents addressing ambiguity.
Besides, the tool does not perform true automation detection of inconsistency and
incompleteness.

Another environment that supports modeling and analysis of NL requirements is
CIRCE (AMBRIOLA; GERVASI, 2006). CIRCE uses a domain-based parser called
CICO to parse and transform NL requirements into a forest of parse trees. A
requirements specification is considered as a set of designations, a set of definitions, and
a set of requirements. CIRCE assumes that the requirements are expressed in restricted
NL: there are formal rules which define the controlled language accepted. Besides, the
domain must be defined by a user by means of designations and definitions written
using a formal syntax. The tool is interesting but expressing the domain may be
difficult, tiresome and time-consuming because it is necessary to declare designations,
using lots of tags, and definitions requiring from a requirements Engineer to perform a
deep analysis of the NL requirements. Furthermore, it is not completely evident that the
tool can properly deal automatically with ambiguity and inconsistency, scalability is an
issue and it is very likely that a user needs to write formal rules, which drive the CICO's
parsing algorithm, when using the tool.

The Natural Language – Object Oriented Production System (NL-OOPS) tool
supports analysis of unrestricted NL requirements by extracting classes and their
associations for use in creating class models (MICH, 1996). The unrestricted NL
analysis is obtained using as a core the NL processing system Large-scale, Object-
based, Linguistic Interactor, Translator, and Analyser (LOLITA). LOLITA is built
around a large graph called SemNet, a particular form of conceptual graph, which holds
knowledge that can be accessed, modified or expanded using NL input. NL-OOPS
allows detection of ambiguities, but probably not all possible types, but there is no

evidence that it supports automated detection of incompleteness and inconsistency.
Moreover, the tool is not scalable.

Gervasi and Zowghi proposed a formal framework for identifying, analyzing,
and managing inconsistency in requirements derived from multiple stakeholders and
expressed in controlled NL (GERVASI; ZOWGHI, 2005). A prototype tool, CARL, was
developed incorporating all the techniques described in the paper. Requirements
expressed in controlled NL are first automatically parsed and translated into
propositional logic formulae. Once the specification is represented as sets of
propositional logic formulae, a theorem prover and a model checker are used aiming at
detecting inconsistencies. Limitations of CARL include no support for automated
detection of incompleteness and ambiguity, scalability and, like CIRCE (AMBRIOLA;
GERVASI, 2006), there is the same problem regarding the likely need to write new
formal rules depending on the domain.

3. Translations of Notations and Model-Based Testing

The translation of specifications elaborated in one notation to another one may be
beneficial for software testing purposes. Approaches that translate simpler notations,
like NL or UML diagrams, to formal methods can be quite convenient because they
relieve testing professionals from the cost of using a formal method but, at the same
time, provide the requirements converted to a formal way for verification and testing.
Some work regarding this topic follows.

The work of Gervasi and Zowghi is an example of transformation of NL
requirements into formal method (GERVASI; ZOWGHI, 2005). Sinha et al. (SINHA et
al., 2007) demonstrated how a combination of UML use case and class diagrams can be
converted to an Extended Finite State Machine (EFSM). Fröhlich and Link presented a
system testing method based on textual descriptions of UML use cases (FRÖHLICH;
LINK, 2000). They translated a use case description into a UML state machine and, after
that, they applied Artificial Intelligence planning techniques to derive test suites
satisfying the coverage testing criterion which asserts that all transitions of the UML
state machine must be traversed at least once.

Sarma and Mall proposed a system testing approach to cover elementary
transition paths (SARMA; MALL, 2009). The technique relies on the derivation of a
System State Graph (SSG) based on UML 2.0 use case, sequence and Statecharts
diagrams. The test criterion which their method aims to satisfy is transition path
coverage where each elementary transition path p of the SSG must be exercised at least
once by a test suite T. One major limitation of their approach is not considering loops in
sequence diagrams, given that a loop is either not executed at all or it is executed only
once. Thus, the authors did not address one of the major problems in path testing
because, in general, a program containing loops will have an infinite or undetermined
number of paths.

The testing community tends to consider MBT as a type of testing in which tests
are derived from software behavioral models (EL-FAR; WHITTAKER, 2001). This
definition includes formal methods specifications and other notations, like UML
models. Finite State Machines (FSMs) (LEE; YANNAKAKIS, 1996) and Statecharts
(HAREL, 1987) are a few examples of modeling techniques commonly used for testing.
Once a system is modeled as a state-transition diagram representing an FSM, several

methods like Transition Tour (TT), Distinguishing Sequence (DS), Unique Input/Output
(UIO), W (SIDHU; LEUNG, 1989), switch cover (PIMONT; RAULT, 1976) and state
counting (PETRENKO; YEVTUSHENKO, 2005) can be used to generate test cases.

Several approaches have been proposed to generate test cases from Statecharts
models. Binder (BINDER, 1999) adapted the W method to a UML context and named it
round-trip path testing. Souza proposed a family of testing coverage criteria, the
Statechart Coverage Criteria Family (SCCF), for models in Statecharts (SOUZA,
2000). Test requirements established by the SCCF criteria are obtained from the
Statecharts reachability tree. Briand et al. (BRIAND et al., 2004) showed a simulation
and a procedure to analyze cost-efficiency of three criteria proposed by Offutt and
Abdurazik (OFFUTT; ABDURAZIK, 1999) and the very same round-trip path.

The Geração Automática de Casos de Teste Baseada em Statecharts (GTSC) is
an environment that allows test designers to model software behavior using Statecharts
and/or FSMs in order to generate test cases automatically based on some test criteria
(methods) for FSM and some for Statecharts (SANTIAGO et al., 2008a). At present,
GTSC has implemented switch cover, UIO and DS test criteria for FSM models and two
test criteria from SCCF, all-transitions and all-simple-paths, targeting Statecharts
models. GTSC has been successfully used for model-based test case generation
regarding software products embedded into experiment on-board computers of scientific
satellites under development at CEA/INPE (SANTIAGO et al., 2008a).

4. The Methodology

This section presents the proposed methodology, shown in Figure 1, which will try to
encompass static and dynamic techniques. The automated analysis of NL requirements
is the static part of the methodology. The bold rectangles in Figure 1 indicate tools that
will be developed to build an NL Processing System. The only tool that will not be
developed is the Part-Of-Speech (POS) Tagger and the first option is to use the Stanford
POS Tagger (TOUTANOVA et al., 2003). The main role of the tagger is to identify
nouns, verbs, adjectives to support the Knowledge Base (KB) inference of the system.

The KB of the system will be encoded using Description Logics (DL), a
formalism for representing knowledge, as well as some important basic notions
underlying all systems that have been created in the DL tradition (NARDI;
BRACHMAN, 2003). A DL KB is typically composed of a TBox and an ABox. The
TBox contains intensional knowledge in the form of a terminology and is built by means
of declarations that describe general properties of concepts. The ABox contains
extensional knowledge that is specific to the individuals of the domain of discourse.

The methodology requires that a user provides a lightweight ontology using a
Graphical User Interface (GUI). Indeed, the user will perform a mapping among domain
words and concepts, sets or classes of individual objects, in the ontology. An ontology,
like the one shown in Figure 2, will exist regarding the domain of software embedded
into satellite on-board computers. Based on reasoning services provided by DL, like
subsumption (NARDI; BRACHMAN, 2003), the KB (TBox and ABox) can be
improved to deal with, for instance, the problem of incompleteness specifications. The
POS Tagger will provide syntactic category in order to help in the KB inference
process, given that it is possible to identify concepts (nouns, domain entities) and
actions (verbs), the latter possibly characterizing relationships (roles). In Figure 2, an

example of concept is OnBoardComp and a role is hasType.Message∃ . The lightweight
term implies that it will not be required to use any type of formalism to provide such
mapping. Besides, the idea is that a user does not take a long time to do that, because the
design ontology will be defined within the tool that supports the methodology.

Figure 1 – The Methodology.

1. OnBoardComp ⊑ SatelliteCompSubsytem
2. OnBoardSoft ⊑ OnBoardComputer
3. CommProtocol ⊑ ∃hasImplementation.OnBoardSoft ⊓ ≥2hasComputer
4. Command ⊑ CommProtocol
5. Response ⊑ CommProtocol
6. Message ≡ Command ⊔ Response
7. Field (⊑ ∃hasType.Message ⊓ ∃hasErrorDetection.Message) ⊓ ≥2hasField

Figure 2 – A piece of ontology (TBox) for space embedded software.

Having the DL KB inferred, semantic and pragmatics analysis may be performed
aiming at detecting ambiguity, inconsistency and incompleteness at the formal level.
These defects will be informed to the user so that he/she can take the proper actions
such as rewriting the requirenments and/or improving the ontology mapping.

Once the requirements Engineer decides the NL specification is adequate, the
dynamic feature of the methodology can take place. This feature refers to system and
acceptance automated test case generation by the translation of the DL KB into
Statecharts models. Recall that such a kind of testing demands the modeling of the

NL Requirements Documents

[Analysis OK]

Description Logics Knowledge Base

[Analysis Not OK]

DL-to-Statecharts
Translator

Models

GTSC tool

QSEE-TAS tool

Test Cases

Test Results

Context Independent

Context Dependent

Lightweight Ontology
(GUI)

Part-Of-Speech (POS)
Tagger

Knowledge Base Inference

Syntactic, Semantic, Pragmatic
Analyzers

entire system. The natural way to address this activity is the divide and conquer strategy,
where a test designer breaks down the system based on functional and possibly non-
functional requirements. This strategy tries to diminish the impact of the existing state
explosion problem related to MBT. Models are then derived to address each
functionality and, in this way, it is more feasible to generate test cases based on such
models. Consider the following three requirements adapted from the specification of
SWPDC, a software product developed under the scope of the Qualidade do Software
Embarcado em Aplicações Espaciais (QSEE) research project (SANTIAGO et al.,
2007):

[ET003] On the beginning of its operation, SWPDC will accomplish a POST (Initiation
Operation Mode) to determine whether the Payload Data Handling Computer (PDC) is healthy
and adequate to operate. If any unrecoverable problem was detected within PDC, this
computer will remain in the Initiation Operation Mode and this problem will not be
propagated to the On-Board Data Handling Computer (OBDH).

[ET012] In the case that none unrecoverable problem was detected within PDC, after
the initiation process, SWPDC shall automatically change the PDC Operation Mode to Safety.

[ET013] The PDC/SWDPC will be available to communicate with the OBDH only
after 1 minute has elapsed since the initiation process.

Such requirements define a small part of a particular scenario that a test designer
must identify in order to elaborate the behavioral model. Figure 3 shows a simple
ontology (TBox) related to the transformation of DL formalism into a reactive system
Statecharts model. Figure 4 shows the ABox considering the tree requirements
abovementioned.

The basic idea to transform such Knowledge Base into a Statecharts model is
considering left-hand side concepts of TBox as states and right-hand side roles as input
or output events within transitions in the model. Note that the roles has IN and OUT
terms meaning the input and output events within transitions, respectively. Also note
that there are roles that are type ev and others that are type evcond. These terms model
the situations where there is just an event without any guard condition (ev) and event
with guard condition (evcond). Besides, a prefix no implies that such type of event (e.g.
no-evcond means that no event with condition occurs to fire the transition) does not
occur. The DL-to-Statecharts Translator component (Figure 1) will then examine the
ABox and, following its structure, it can generate the Statecharts model.

In order to clarify how the model can be generated, see statements 2, 3 and 4 in
Figure 4. In 2, the next (destination) state will be Initiation Mode. In 3, the input event
without guard condition is switchPDCOn and the source state is PDCOff (which is also
the initial state of the model; see statement 1). In 4, the output event is start60s, given
that requirement [ET013] specifies a one-minute delay in order SWPDC/PDC can be
able to communicate with the OBDH. Figure 5 shows the Statecharts model regarding
the scenario described by such requirements.

Obviously, the derivation of the behavioral model requires a precise KB (TBox
and ABox), and this shows how important is the role of the Knowledge Base Inference
component within this methodology. Moreover, it is important to note that there should
exist different KBs within the system, like the KB resulted from the analysis of NL
requirements and the KB regarding the translation from DL to behavioral models to
support testing.

1. InitialState ≡ ∃hasINITIALSTATE.System
2. NextState ⊑ (((∃hasIN_ev.InitialState ⊓ ∃hasIN_no-evcond.InitialState) ⊔

(∃hasIN_no-ev.InitialState ⊓ ∃hasIN_evcond.InitialState)) ⊓
(∃hasOUT_event.InitialState ⊔ ∃hasOUT_null-out.InitialState)) ⊔
(((∃hasIN_ev.OtherState ⊓ ∃hasIN_no-evcond.OtherState) ⊔ (∃hasIN_no-
ev.OtherState ⊓ ∃hasIN_evcond.OtherState)) ⊓ (∃hasOUT_event.OtherState ⊔
∃hasOUT_null-out.OtherState))

3. NoMovement ⊑ ∃hasIN_undef-event.InitialState ⊔ ∃hasIN_undef-
event.OtherState

Figure 3 – An example of a ontology (TBox) regarding the DL to Statecharts

translation.

1. InitialState(PDCOff)
2. NextState(InitiationMode)
3. hasIN_ev(PDCOff, switchPDCOn)
4. hasOUT_event(PDCOff, start60s)
5. NextState(SafetyMode)
6. hasIN_evcond(InitiationMode, end60s [POSTStatusOk])
7. hasOUT_event(InitiationMode, changeToSafety)
8. NextState(InitiationMode)
9. hasIN_evcond(InitiationMode, noend60s [⌐POSTStatusOk])
10. hasOUT_null-out(InitiationMode, null)
11. NextState(InitiationMode)
12. hasIN_evcond(InitiationMode, end60s [⌐POSTStatusOk])
13. hasOUT_null-out(InitiationMode, null)

Figure 4 – An example of a ABox addressing three requirements of SWPDC.

Figure 5 – The derived Statecharts model.

Once the Statecharts models are derived, the GTSC environment may be used
for test case generation and the QSEE-Teste Automatizado de Software (QSEE-TAS)
tool may automatically execute the test cases (SANTIAGO et al., 2008b).

PDCOff Initiation
Mode

switchPDCOn
/ start60s Safety

Mode

end60s [POSTStatusOK]
/ changeToSafety

end60s [⌐POSTStatusOK]

noend60s [⌐POSTStatusOK]

5. Conclusions

This paper presented a review literature regarding NL requirements and MBT, and also
a methodology to address the analysis of NL specifications aiming to identify
automatically defects such as ambiguity, inconsistency, and incompleteness. The
methodolgy also intends to translate such requirements, actually their Description
Logics representantion, into Statecharts behavioral models to support the automation of
system and acceptance testing. Preliminary developments related to this work are the
ontologies designed to address space embedded software and DL to Statecharts
translation, and a mechanism to derive behavioral models for testing purposes based on
an adequate ABox.

Future work will include improving the proposed ontologies, the development of
the tools shown in Figure 1 and the POS Tagger integration with such tools.

References
AMBRIOLA, V.; GERVASI, V. On the Systematic Analysis of Natural Language Requirements with

CIRCE. Automated Software Engineering, v. 13, n. 1, p. 107-167, 2006.

BINDER, R. V. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-Wesley
Professional, 1999. p. 1248.

BRIAND, L. C.; LABICHE, Y.; WANG, Y. Using Simulation to Empirically Investigate Test Coverage
Criteria Based on Statechart. In: 26th Int. Conf. on Software Engineering, 2004, Edinburgh, Scotland,
UK. p. 86-95.

EL-FAR, I. K.; WHITTAKER, J. A. Model-Based Software Testing. In: MARCINIAK, J. J. (ed.).
Encyclopedia of Software Engineering. Wiley, 2001. p. 1584.

FRÖHLICH, P.; LINK, J. Automated Test Case Generation from Dynamic Models. LNCS, v. 1850, p.
472-491, 2000.

GERVASI, V.; ZOWGHI, D. Reasoning about Inconsistencies in Natural Language Requirements. ACM
Transactions on Software Engineering and Methodology, v. 14, n. 3, p. 277-330, 2005.

GNESI, S.; LAMI, G.; TRENTANNI, G. An automatic tool for the analysis of natural language
requirements. International Journal of Computer Systems Science and Engineering, v. 20, n. 1, p. 1-13,
2005.

HAREL, D. Statecharts: A visual formalism for complex systems. Science of Computer Programming, v.
8, p. 231-274, 1987.

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state machines – A Survey.
Proceedings of the IEEE, v. 84, n. 8, p. 1090-1123, 1996.

MICH, L. NL-OOPS: from natural language to object oriented requirements using the natural language
processing system LOLITA. Natural Language Engineering, v. 2, n. 2, p. 161-187, 1996.

MICH, L.; FRANCH, M.; INVERARDI, P. Market research for requirements analysis using linguistic
tools. Requirements Engineering Journal, v. 9, n. 1, p. 40-56, 2004.

NARDI, D.; BRACHMAN, R. J. An Introduction to Description Logics. In: BAADER, F.;
CALVANESE, D.; MCGUINNESS, D.; NARDI, D.; PATEL-SCHNEIDER, P. (eds.). The
Description Logic Handbook. Cambrige University Press, 2003. p. 505.

OFFUTT, J.; ABDURAZIK, A. Generating Tests from UML Specifications. LNCS, v. 1723, p. 416-429,
1999.

PETRENKO, A.; YEVTUSHENKO, N. Testing from Partial Deterministic FSM Specifications. IEEE
Transactions on Computers, v. 54, n. 9, p. 1154-1165, 2005.

PIMONT, S., RAULT, J. C. A Software Reliability Assessment Based on a Structural and Behavioral
Analysis of Programs. In: 2nd Int. Conf. on Software Engineering, 1976, San Francisco, CA, USA. p.
486-491.

SANTIAGO, V.; MATTIELLO-FRANCISCO, F.; COSTA, R.; SILVA, W. P.; AMBROSIO, A. M.
QSEE Project: An Experience in Outsourcing Software Development for Space Applications. In: The
19th Int. Conf. on Software Engineering & Knowledge Engineering, 2007, Boston, USA. p. 51-56.

SANTIAGO, V.; VIJAYKUMAR, N. L.; GUIMARÃES, D.; AMARAL, A. S.; FERREIRA, E. An
Environment for Automated Test Case Generation from Statechart-based and Finite State Machine-
based Behavioral Models. In: 4th A-MOST, 1st IEEE Int. Conf. on Software Testing Verification and
Validation, 2008, Lillehammer, Norway. p. 63-72.

SANTIAGO, V.; SILVA, W. P.; VIJAYKUMAR, N. L. Shortening Test Case Execution Time for
Embedded Software. In: 2nd IEEE Int. Conf. on Secure System Integration and Reliability
Improvement, 2008, Yokohama, Japan. p. 81-88.

SARMA, M.; MALL, R. Automatic generation of test specifications for coverage of system state
transitions. Information and Software Technology, v. 51, n. 2, p. 418-432, 2009.

SIDHU, D. P.; LEUNG, T. K. Formal Methods for Protocol Testing: A Detailed Study. IEEE
Transactions on Software Engineering, v. 15, n. 4, p. 413-426, 1989.

SINHA, A.; PARADKAR, A.; WILLIAMS, C. On Generating EFSM models from Use Cases. In: 6th Int.
Workshop on Scenarios and State Machines, 29th Int. Conf. on Software Engineering, 2007,
Minneapolis, MN, USA. p. 1-8.

SOUZA, S. R. S. Validação de Especificações de Sistemas Reativos: Definição e Análise de Critérios de
Teste. f. 264. PhD Thesis, Universidade de São Paulo, São Carlos, SP, Brazil, 2000.

TOUTANOVA, K.; KLEIN, D.; MANNING, C. D.; SINGER, Y. Feature-rich part-of-speech tagging
with a cyclic dependency network. In: Conf. of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology, 2003, Edmonton, Canada. p. 173-180.

	1.Introduction
	2.Natural Language Specifications
	3.Translations of Notations and Model-Based Testing
	4.The Methodology
	5.Conclusions

