

Prototyping GIS Application in Functional Programming

Sérgio S. Costa
1
, Ana Paula Aguiar

1
, Gilberto Câmara

1

1Earth System Science Center (CST) � Instituto Nacional de Pesquisas Espaciais (INPE)
- Av. dos Astronautas, 1758 � 12227-001 � São José dos Campos � SP � Brasil

{ scosta, anapaula, gilberto}@dpi.inpe.br

Abstract. Functional programming languages satisfy the key requirements for

specification languages, having expressive semantics and allowing rapid

prototyping. Translating formal semantics is direct, and the resulting

algebraic structure is extendible. One of the important uses of functional

language for GIS is to enable fast and sound development of new applications.

In this paper, we present an introduction to the basic features of TerraHS in

prototyping GIS application. TerraHS is software developed in Haskell

language for GIS application developing that provide basic spatial operations

and structures for prototyping novel ideas in GisScience.

1. Introduction

Developing geographic information systems is a complex enterprise. GIS applications
involve data handling, algorithms, spatial data modeling, spatial ontologies and user
interfaces. The diversity of data types as networks, fields, objects, time series and
spatial-temporal (Figure 1), is an intimidating problem for GIS developer.

Figure 1 General view of GIS datas

 Research in Geographic Information Science has shown than many spatial data
can be expressed as algebraic theories [Kuhn 1993; Frank and Kuhn 1995; Frank 1999;
Medak 2001]. These algebraic theories formalize spatial components in a rigorous and
generic ways. As an answer to the challenges of translation of algebraic specifications
into computer languages, there has been a growing interest in functional languages. In
this paper, we present an introduction to TerraHS, an application development system
that enables prototyping novel GisScience ideas in functional language [Costa, Câmara
and Palomo 2007].

id26792968 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:gilberto}@dpi.inpe.br

1. A Brief description of TerraHS

TerraHS links to TerraLib using the Foreign Function Interface (FFI) [Chakravarty
2003] and to additional code written in C (TerraLibC), which maps the FFI to
TerraLib methods. In the Figure 2, lighter colors represent the parts provided by
TerraHS and darker colors represent the existing components.

Figure 2. Architecture of TerraHS

 Lower layers provide basic services over which upper layer services are
implemented. In the bottom layer, TerraLib supports different spatial database
management and many spatial algorithms. In the second layer, TerraLibC maps the
Terralib C++ methods to the Haskell FFI. In the third layer, the FFI enables calling the
TerraLibC functions from Haskell. In the fourth layer, TerraLibH contains the modules
that map TerraLib C++ classes to Haskell data types and functions, TeGeometry.hs,
TeDatabase.hs and so on. Misc, contains the modules that provide auxiliary functions to
TerraHS, such as string and generic functions. In the fifth layer, contains data types and
services for supporting to new specific algebras in the last layer. They describe algebraic
abstract data types for spatial, temporal, database and base data types. More details and
examples are described in http://lucc.ess.inpe.br/doku.php?id=terrahs.

2.1 Installing and using

TerraHS is available in Cabal1 format from HackageDB site2. However, firstly it is
necessary to download and to install the following requirements: (a) GHC-6.10.1, (b)
MySQL-5.0.41, (c) TerraView-3.2.0 and (e) TerraLibC-0.5.

1 Cabal (http://www.haskell.org/cabal) is a standard way of packaging Haskell source code that
makes it easy to build and install
2 Direct address to download TerraHS: http://hackage.haskell.org/cgi-bin/hackage-
scripts/package/terrahs

http://lucc.ess.inpe.br/doku.php?id=terrahs
http://hackage.haskell.org/cgi-bin/hackage-

 After that, download terrahslib-0.6.rar and unzip the archive. Thus will create a
directory terrahslib-0.6. From a prompt, move into the created directory and run the
following commands:
runhaskell Setup configure
runhaskell Setup build
runhaskell Setup install

 Install the Eclipse Software Development Kit (Eclipse SDK) application,
obtaining the latest version from the Eclipse site (www.eclipse.org). After that, is
necessary to download and install the Haskell plugin via the built-in Update Manager in
Eclipse, more details in: http://eclipsefp.sourceforge.net/.

Figure 3. Using TerraHS in Eclipse software

2.3 Examples of reading and writing GIS data from database

In GIS application, there are two major data types, geo-object and geo-field. Geo-objects
represent individualizable entities of the geographic realm. They are phenomena that
may have one or more graphical representations, which correspond to the geo-
referenced set of co-ordinates that describe the object�s location. A geographical field or
geo-field represents a continuous geographical variable over some region of the Earth
[Câmara, Freitas and Casanova 1995].

http://eclipsefp.sourceforge.net/

a. Example of geo object b. Example of geo fields

Figura 1. Examples of data types supported in TerraHS

 A geo-object in TerraHS is a triple:

 ObjectId is used to give to each geo-object a unique identity to distingue a geo-
object in TerraLib database. Attributes are the descriptive part of a geo-object. An
attribute has a name and a value. TeGeometry is the spatial part, which can have
different representations, as point, line, polygon and cell.

A geo-field in TerraHS is provided by raster data type:

 TeRaster is a generic structure for handling raster data independent from format (eg.
float, integer, char), size of each raster element or storage device. In below, is showed an
example of a program, which load a raster from database, apply a inverse operation and save to
a new raster.

 The structure of a program that loads a geo-object is the same; the single
difference is showed below:

 In this case, the return of retrieve function is a set of TeGeoobject.

3. Prototyping GIS applications

The Section 2 shows the two major data type provided by TerraHS software. However,
sometimes we need to build the specific data types in functional language. For example,
consider the algebra of moving objects proposed by [Güting and Schneider 2005]. They
define a basic type moving point (mpoint) as a mapping between a temporal reference
and a spatial location. A simple implementation of the mpoint data type in Haskell is:

 For this reason, we provided a common approach to deal with specific data types
into TerraHS, Figure 4.

Figure 4. Retrieving and storing specific data type from spatial database

 The goal of this approach is to enable a generic and elegantly way to retrieve and
store a specific data type from database. In sum, we implement a new module in
TerraHS that provide two type classes, as showed below.

 The type class ModelConvert consists of two operations, toTerraHs and
fromTerraHS that describe how to map between TerraHS data types and specific data
types. These operations must be instantiated for specific data type, such as MPoint.

 The second class provides generic functions for storage and retrieval specific
data types from a spatial database. The axioms of type class ModelPersistence is
generic, it can be applied to different types. We can now write a program that reads and
writes the specific data types from a spatial database, as showed below.

4. Final Remarks

In this paper, we showed a brief introduction of a latest version of TerraHS software,
which include spatial and temporal types. Besides, we present a generic and elegantly
way to access and write specific data types from a spatial database, given that the major
application of TerraHS is to provide a concise way to test new abstract data types.

References

Câmara, G., U. Freitas and M. Casanova (1995). Fields and Objects Algebras for GIS
Operations. III Brazilian Symposium on Geoprocessing, São Paulo, USP.

Chakravarty, M. (2003). "The Haskell 98 foreign function interface 1.0: an addendum
to the Haskell 98 report." Retrieved 12/05/2006, 2006, from
http://www.cse.unsw.edu.au/~chak/haskell/ffi/.

Costa, S. S., G. Câmara and D. Palomo (2007). TerraHS: Integration of Functional
Programming and Spatial Databases for GIS Application Development. Advances in
Geoinformatics: 127-149 %U http://dx.doi.org/10.1007/978-3-540-73414-7_8.

Frank, A. (1999). One Step up the Abstraction Ladder: Combining Algebras - From
Functional Pieces to a Whole. Spatial Information Theory - A Theoretical Basis for
GIS (International Conference COSIT'99, Stade, Germany). C. Freksa and D. M.
Mark. Stade, Germany, Springer-Verlag: 95-107.

Frank, A. and W. Kuhn (1995). Specifying Open GIS with Functional Languages.
Advances in Spatial Databases�4th International Symposium, SSD �95, Portland,
ME. M. Egenhofer and J. Herring. Berlin, Springer-Verlag. 951: 184-195.

Güting, R. H. and M. Schneider (2005). Moving objects databases, Morgan Kaufmann
Publishers.

Kuhn, W. (1993). Metaphors Create Theories for Users. Spatial Information Theory. A.
Frank and I. Campari. Berlin, Springer-Verlag. 716: 366-376.

Medak, D. (2001). Lifestyles. Life and Motion of Socio-Economic Units. ESF Series.
A. U. Frank, Raper, J., & Cheylan, J.-P. London, Taylor & Francis.

http://www.cse.unsw.edu.au/~chak/haskell/ffi/
http://dx.doi.org/10.1007/978-3-540-73414-7_8

