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Abstract. We present results from computational experiments of one-
dimensional granular fluid. With characteristic properties lying between those
of liquids and solids, this class of material consists of assemblies of solid par-
ticles which interact via mechanical forces (contact and friction) and are main-
tained together by a gravitational field. The system is composed of a vertical
column of spherical beads driven by a sinusoidally vibrating plate. Results for
N-beads experiments show the fluidization and condensationphenomena, both
dependent on the amplitude and frequency of the driving plate. Some scaling
properties arising from the dynamics of the beads are also shown.

Resumo. Usando a t́ecnica de Evento-Dirigido, apresentamos resultados de
simulaç̃oes computacionais da dinâmica de um fluido granular unidimensional.
Com caracteŕısticas semelhantes aos sólidos e aos ĺıquidos, esses tipos de ma-
teriais s̃ao formados por um conjunto de partı́culas śolidas que interagem via
forças de contato mecânicas e de fricç̃ao, sendo mantidas juntas por um um
campo gravitacional. O sistema compõe-se de uma coluna vertical de esferas
submetidas̀a aç̃ao de uma base vibratória. Os resultados das simulações para o
caso geral comN esferas apresentam fenômenos de fluidização e condensação,
ambos dependentes da amplitude e frequência da base. Leis de escalas, in-
cluindo a posiç̃ao ḿedia do centro de massa e a dilatação da coluna, resultantes
da din̂amica das esferas, também s̃ao verificadas.

1. Introdução
Granular materials are present in everyday life playing a critical role in several fields of
applications such as pharmaceutical, cosmetic and housingindustries. The studies about
granular proprieties can improve procedures involving extraction, transport, storage and
mixing process . Each process can present desired and undesired phenomena ocasioned
by intrisic features of the granular dynamic. Moreover, understanding these proprieties
is essential to optimize costs of granular handling such as waste of energy for example.
Granular flow systems can present clogging and mixture procedures that may lead to
segregation given wrong conditions [Duran 2000]. Initially, due to the large and practical
applicability, this field was first restricted to engineering studies. However, as granular
systems can also exhibit period doubling followed by chaotic behavior, they have been
investigated by physicists and computational mathematicians.

The great challenge to understand the behavior of granular system is to deter-
mine the state of matter of the system. Granular matter can behave either like fluid



or like a solid. Therefore new theoretical ideas beyond classical mechanics are needed
[Kadanoff 1999].

Solid matter has initial shape called unstressed shape which can be modified by a
shear stress. The modified quantity from the rest shape is called defomation and it is pro-
portional to Young modulus. Granular matter can not be considered as solid because they
can deform continually under an applied shear stress regardless of how small the applied
stress is [Anderson 1990]. In addition, granular matter canflow. Granular matter display
similar phenomena as in the ordinary fluids such as freezing,plasticity and hysteresis
[Kadanoff 1999]. By contrast, granular matter is composed of discrete and macroscopical
units and present substantial change of density histeresis[Du et al. 1995]. The density
of the fuid is either null (void), or material density(ρ) breaking the continuum mechan-
ics approximations [Landau and Lifshitz 2004]. Therefore they can not be considered as
fluid and can not be modeled by the Navier-Stokes equation.

Moreover, granular matter and molecular gases are composedof discrete units and
behave according to Newton’s laws of mechanics. However, beyond the diferences in the
size of particles, collisions between units dissipate energy leading to emergence of some
phenomena exclusively found on granular systems. Granulargases exhibit a tendency to
coagulate into cluster without the aid of attractive interactions [Goldhirsch 1993]. This
phenomenon are consequence of the dissipative interactions and they do not have cor-
respondence in the elastic world. Collapses occur in groupsbetween near-interacting
particles. It happens when there is a high number of collision between particles in short
interval of time and the overall state of the system does not present relevant changing.
The assembly of particles has a small relative velocity leading to the emergence of parti-
cles strings with vanishing relative velocities. Colapse are consequence of local interation
[Goldhirsch 1999]. Other important phenomena is clustering. Consider a uniform dis-
tribution of particles over a domain. As a result of statistical fluctuation, the density in
certain region is increasead locally without change in granular temperature. High density
leads to a high number of collisions and dissipation which inturn makes the temperature
to rise in the region of high density as a result of energy dissipation. As collisions are
inelastic, the granular temperature and consequently the pressure in the dense regime de-
cays faster than neighboring region. Other particles are attracted to the denser region in
attempting to equalize global pressure. The number of particles and collisions increases
and self-amplify the process [Goldhirsch 2003].

The present work focuses on the condensation and fluidization phenomena veri-
fied in one-dimmensional granular system. Explaining the model and the numerical pro-
cedure, section 2 presents the simulation of a colunm of beads driven by a vibrating plate.
Section 3 gives some results and discussions about fluidization and condensation state as
well as some scaling laws related to center of mass. Conclusions are presented in section
5.

2. The Numerical Procedure

The simulation system consists of a vertical container withspheres with radiusr equally
spaced and driven by a sinosuidally plate of infinitely largemass. Spheres are allowed
to move only in the vertical coordinate and therefore they can not exchange postions.
Dissipation only occurs during collisions between particles with a coeficient of restitution



0 < e < 1. Dissipation may also occur between the first sphere and the plate, according
to coeficient of restitutionew.

Collisions between spheres are instantaneous and head to head since there is no
angular momentum transfer between particles. The post collisions velocities obey the
following relation [Luding et al. 1994]:
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whereu andv are the corresponding velocities before and after collision of thei-th
particle. A similar procedure is applied to sphere-base interaction. The plate is governed
by sinusoidal functionAsin(ωt) with A as the amplitude andω = 2πf as the angular
frequency. One must obtain the exact instant of collision between the bottom sphere and
base. This can be done by solving a system of non-linear equations
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wheret∗ is collision time. The current model is non-linear and is called Bouncing
Ball which is widely studied due to period doubling and chaotic behavior. In order to
avoid problems in numerical methods, one must normalize themodel grouping parameters
according to
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ỹ(τ) = yn − vnτ −
τ 2

2
(3)

x̃(τ) = Γsen(τ) (4)

whereΓ is the control parameter of the system.

Upon using numerical methods, timet∗ of next collision is calculated. Once de-
fined the collisional time, one must update the post-collisional velocity of the bottom
sphere after collision, described by the followig relation
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whereew is coeficient of restitution between the sphere and the base.

Event driven molecular dynamics consists of estimating allpossible collision be-
tween particles according to equation 6. [Porschel and Schwager 2005].



Table 1. Results for Γ = 1.5 and Γ = 2.0. In figure a, particles move compactly and
periodically in the condensed regime. In figure b, condensed regime vanishes as
we increase Γ values.

2410 2415 2420 2425 2430 2435 2440 2445
Normalized Time [wt]

0

5

10

15

N
o

rm
a

liz
e

d
 H

e
ig

h
t 
[v

/(
g

/w
^2

)]

0 0,5 1
Normalized Frequency [f/w] 

0

0,25

0,5

0,75a)

2470 2480 2490 2500 2510
Normalized Time [wt]

0

5

10

15

20

25

N
o

rm
a

liz
e

d
 H

e
ig

h
t 
[v

/(
g

/w
^2

)]

0 0,5 1
Normalized Frequency [f/w]

0

0,05

0,1

0,15

0,2b)

t∗ =
xi,t − xi−1,t

vi,t − vi−1,t

(6)

wherex andv are the position and the velocity ofi-th particle respectively. All
values are stored and the smallest∆t determines the ocurrence of the next event. Within
this period, we assume all particles describe trajectoriesfollowing classical laws of me-
chanics. Positions and velocities of all particles must be updated in each event. The list
of time events ought to be modified considering new values.

3. Results

We focus our attention on the proprieties and effects of energy dissipation. Simulations
usedN = 8, 10, 12 and20 spheres. Dissipation ocurrs in particle-particle collision,ew =
1, e = 0.92. We useA to adjust the energy input keeping the frequency constant at20hz.

First, we adopted a low oscillation withA = 9, 30888× 10−4 andΓ = 1.5. Result
is shown in figure 1a. Particles oscillate together grouped as a cluster due to the low
energy input. We obtained the trajectory of the center of mass of the system and applied
the FFT in order to analyse the periodicity of the system. Trajectory of the center of mass
is periodic with a characteristic period and also present a subharmonic component in the
frequency spectra. If energy is decreased still, a Feigenbaunn scenario is obtained, with a
birfurcation cascade displaying period doubling. At this regime, system moves compactly
resembling a solid system. We say system is under the condensation regime.

However, if we increaseΓ = 2.0, the condensation regime starts to vanish and
particles can propagate separately. The global system still has a compact aspect and some
periodic frequencies show up the spectra as we can see in figure 1b.

At higher values,Γ = 8.0, particles move independently and motion looks erratic.
This state of the figure 2a is called fluidization. The center of mass has a chaotic behavior
and no characteristic behavior can be determined. As in the previous example, this regime
resembles the behavior of a fluid, with sparse distance amongparticles.



Table 2. Figure a presents results for Γ = 8.0 showing the fluidized state and
chaotic moviment of center of mass. Figure b shows dilation diagram for f =
20hz.
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We take the mean dilation as an indicator of the state of the system. This nondi-
mensional quantity is defined by:

λ =
〈zn − z1〉

Aω
(7)

Figure 2b shows a dilation diagram as a function ofΓ. The result shows distinct
regions with condensed and fluidized regimes separeted by a linear transition. The amount
of energy of the system is directly proportional to dilation. System with fewer beads has
lower dissipitative rates and higher dilation index. The simulation with 20 beads indicates
higher dissipation with the corresponding curve below all others. Figure 3a shows a law
scale between center of mass and coeficiente of restitution.Energy decays exponentialy as
we decreasee. The same can be obtained by the number of beads. Figure 3b shows similar
results as we vary the number of components. Defining a new function X = (1 − e)N
and multiplying the previous results of figure 4 by the numberof particles we can adjust
all curves in one single curve with a resulting slope of -1.15.

4. Conclusion

The dual behavior of granular materials can be found even in the simplest case. Fluidiza-
tion and condensation can be obtained by adjusting the vibration rate of the base. As we
increase the input energy dilatation reaches a limit in the fluidization regime. Power laws
can be adjusted from the flux of energy of the system as function of dissipation, which is
independent on the number of beads and the coeficient of restitution.



Table 3. Scale laws for the dissipative parameter of the mode l. Both, coeficient of
restitution (Figure a) and number of particles (Figure b) ar e related exponentialy
with the mean value of the center of mass.
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Table 4. Scale law for the mean height of the center of mass in f unction of X

given by equation X = (1 − e)N . All curves can be adjusted in one curve if we
multiply by a constant factor.
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