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Abstract. We present results from computational experiments of one-
dimensional granular fluid. With characteristic propesifying between those

of liquids and solids, this class of material consists ofemsilies of solid par-
ticles which interact via mechanical forces (contact aridtion) and are main-
tained together by a gravitational field. The system is casrpoof a vertical
column of spherical beads driven by a sinusoidally vibrgfotate. Results for
N-beads experiments show the fluidization and condensplienomena, both
dependent on the amplitude and frequency of the drivingepl&bme scaling
properties arising from the dynamics of the beads are alsovsh

Resumo. Usando a &cnica de Evento-Dirigido, apresentamos resultados de
simula@es computacionais da dimica de um fluido granular unidimensional.
Com caracteisticas semelhantes ao8lislos e aosiquidos, esses tipos de ma-
teriais 40 formados por um conjunto de pamtlas $lidas que interagem via
forcas de contato mé@aicas e de fricgo, sendo mantidas juntas por um um
campo gravitacional. O sistema cobgse de uma coluna vertical de esferas
submetidas agio de uma base vibratia. Os resultados das simulags para o
caso geral comV esferas apresentam f@menos de fluidiz&p e condensdp,
ambos dependentes da amplitude e féeguia da base. Leis de escalas, in-
cluindo a posiéo nédia do centro de massa e a dilafaxda coluna, resultantes
da dirdmica das esferas, taraln 0 verificadas.

1. Introducao

Granular materials are present in everyday life playingitecat role in several fields of
applications such as pharmaceutical, cosmetic and houslinigtries. The studies about
granular proprieties can improve procedures involvingaetion, transport, storage and
mixing process . Each process can present desired and tediphienomena ocasioned
by intrisic features of the granular dynamic. Moreover, ensthnding these proprieties
is essential to optimize costs of granular handling such astevof energy for example.
Granular flow systems can present clogging and mixture pkges that may lead to
segregation given wrong conditions [Duran 2000]. Inifiatlue to the large and practical
applicability, this field was first restricted to enginegristudies. However, as granular
systems can also exhibit period doubling followed by clabghavior, they have been
investigated by physicists and computational mathenzatsci

The great challenge to understand the behavior of granyiers is to deter-
mine the state of matter of the system. Granular matter caaveeeither like fluid



or like a solid. Therefore new theoretical ideas beyondsitas mechanics are needed
[Kadanoff 1999].

Solid matter has initial shape called unstressed shapehwhit be modified by a
shear stress. The modified quantity from the rest shapeledadfomation and it is pro-
portional to Young modulus. Granular matter can not be c@rsid as solid because they
can deform continually under an applied shear stress riegardf how small the applied
stress is [Anderson 1990]. In addition, granular matterfeam Granular matter display
similar phenomena as in the ordinary fluids such as freeptasgticity and hysteresis
[Kadanoff 1999]. By contrast, granular matter is compodetistrete and macroscopical
units and present substantial change of density histefi@aigt al. 1995]. The density
of the fuid is either null (void), or material densify) breaking the continuum mechan-
ics approximations [Landau and Lifshitz 2004]. Therefdreytcan not be considered as
fluid and can not be modeled by the Navier-Stokes equation.

Moreover, granular matter and molecular gases are compdskstrete units and
behave according to Newton'’s laws of mechanics. Howevgnitethe diferences in the
size of particles, collisions between units dissipate gnérading to emergence of some
phenomena exclusively found on granular systems. Gragakes exhibit a tendency to
coagulate into cluster without the aid of attractive intéi@ns [Goldhirsch 1993]. This
phenomenon are consequence of the dissipative interaciiod they do not have cor-
respondence in the elastic world. Collapses occur in gringpaeen near-interacting
particles. It happens when there is a high number of coflibetween particles in short
interval of time and the overall state of the system does nedégmt relevant changing.
The assembly of particles has a small relative velocityileatb the emergence of parti-
cles strings with vanishing relative velocities. Colapsee@nsequence of local interation
[Goldhirsch 1999]. Other important phenomena is clustgri@onsider a uniform dis-
tribution of particles over a domain. As a result of statakifluctuation, the density in
certain region is increasead locally without change in gi@ntemperature. High density
leads to a high number of collisions and dissipation whictum makes the temperature
to rise in the region of high density as a result of energyipéion. As collisions are
inelastic, the granular temperature and consequentlyrgsspre in the dense regime de-
cays faster than neighboring region. Other particles draci¢d to the denser region in
attempting to equalize global pressure. The number ofgdestiand collisions increases
and self-amplify the process [Goldhirsch 2003].

The present work focuses on the condensation and fluidizatienomena veri-
fied in one-dimmensional granular system. Explaining thel@hand the numerical pro-
cedure, section 2 presents the simulation of a colunm ofdéadken by a vibrating plate.
Section 3 gives some results and discussions about flumlizabhd condensation state as
well as some scaling laws related to center of mass. Cowclssire presented in section
5.

2. The Numerical Procedure

The simulation system consists of a vertical container sjtheres with radius equally
spaced and driven by a sinosuidally plate of infinitely langgss. Spheres are allowed
to move only in the vertical coordinate and therefore thay pat exchange postions.
Dissipation only occurs during collisions between pagsalvith a coeficient of restitution



0 < e < 1. Dissipation may also occur between the first sphere andiéte, @ccording
to coeficient of restitution,,.

Collisions between spheres are instantaneous and headdoshee there is no
angular momentum transfer between particles. The possicwis velocities obey the
following relation [Luding et al. 1994]:
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whereu andv are the corresponding velocities before and after coflisidhei-th
particle. A similar procedure is applied to sphere-baseradtion. The plate is governed
by sinusoidal functiomsin(wt) with A as the amplitude and = 27 f as the angular
frequency. One must obtain the exact instant of collisiawben the bottom sphere and
base. This can be done by solving a system of non-linear ieqsat

Y =yo + vot* + % )
X(t) = Asin(wt*)

wheret* is collision time. The current model is non-linear and isezhBouncing
Ball which is widely studied due to period doubling and cl@biehavior. In order to
avoid problems in numerical methods, one must normalizentbael grouping parameters
according to
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given the nondimensional variables
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wherel is the control parameter of the system.

Upon using numerical methods, timieof next collision is calculated. Once de-
fined the collisional time, one must update the post-coltial velocity of the bottom
sphere after collision, described by the followig relation
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wheree,, is coeficient of restitution between the sphere and the base.

Event driven molecular dynamics consists of estimatingadisible collision be-
tween particles according to equation 6. [Porschel and &gbn2005].



Table 1. Results for I" =1.5and I = 2.0. Infigure a, particles move compactly and
periodically in the condensed regime. In figure b, condensed regime vanishes as
we increase I values.
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wherex andv are the position and the velocity éth particle respectively. All
values are stored and the smalléstdetermines the ocurrence of the next event. Within
this period, we assume all particles describe trajectdokswing classical laws of me-
chanics. Positions and velocities of all particles must jpaated in each event. The list
of time events ought to be modified considering new values.

3. Results

We focus our attention on the proprieties and effects ofgndissipation. Simulations
usedN = 8,10, 12 and20 spheres. Dissipation ocurrs in particle-particle cadise,, =
1, e = 0.92. We useA to adjust the energy input keeping the frequency constalit/at

First, we adopted a low oscillation with = 9, 30888 x 104 andI" = 1.5. Result

iIs shown in figure 1a. Particles oscillate together groupsed aluster due to the low

energy input. We obtained the trajectory of the center ofsnedishe system and applied
the FFT in order to analyse the periodicity of the systemjebtary of the center of mass

is periodic with a characteristic period and also presenitdarmonic component in the

frequency spectra. If energy is decreased still, a Feigembacenario is obtained, with a
birfurcation cascade displaying period doubling. At tiegime, system moves compactly
resembling a solid system. We say system is under the coati@msegime.

However, if we increasé€ = 2.0, the condensation regime starts to vanish and
particles can propagate separately. The global systerasila compact aspect and some
periodic frequencies show up the spectra as we can see ie fidpur

At higher values]" = 8.0, particles move independently and motion looks erratic.
This state of the figure 2a is called fluidization. The centenass has a chaotic behavior
and no characteristic behavior can be determined. As inrhequs example, this regime
resembles the behavior of a fluid, with sparse distance arpariigles.



Table 2. Figure a presents results for I" = 8.0 showing the fluidized state and
chaotic moviment of center of mass. Figure b shows dilation diagram for f =
20hz.
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We take the mean dilation as an indicator of the state of teeemsy. This nondi-
mensional quantity is defined by:

A= A_le> ()

Figure 2b shows a dilation diagram as a functiori'ofThe result shows distinct
regions with condensed and fluidized regimes separetedibgar kransition. The amount
of energy of the system is directly proportional to dilati@&ystem with fewer beads has
lower dissipitative rates and higher dilation index. Thawdation with 20 beads indicates
higher dissipation with the corresponding curve below #ikos. Figure 3a shows a law
scale between center of mass and coeficiente of restitlinergy decays exponentialy as
we decrease. The same can be obtained by the number of beads. Figure @i shuilar
results as we vary the number of components. Defining a neatitmX = (1 — ¢)N
and multiplying the previous results of figure 4 by the numiidfgparticles we can adjust
all curves in one single curve with a resulting slope of -1.15

4. Conclusion

The dual behavior of granular materials can be found evemarsimplest case. Fluidiza-
tion and condensation can be obtained by adjusting thetiobreate of the base. As we
increase the input energy dilatation reaches a limit in thiditation regime. Power laws
can be adjusted from the flux of energy of the system as fumdfialissipation, which is
independent on the number of beads and the coeficient atiurtésti.



Table 3. Scale laws for the dissipative parameter of the mode I. Both, coeficient of
restitution (Figure a) and number of particles (Figure b) ar e related exponentialy
with the mean value of the center of mass.
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Table 4. Scale law for the mean height of the center of mass in f unction of X

given by equation X = (1 — ¢)N. All curves can be adjusted in one curve if we
multiply by a constant factor.
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