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Abstract: The transition from integrability to non- is matched. For many mappings considered in the litera-
integrability for a two dimensional Hamiltonian mapping ex ture, the functiorp(6,,, I,+1) = 0. Hence, if we keemh
hibiting mixed phase space is considered. The phase spaash(6,) = sin(f,,), and varyK, to illustrate applicability

of such mapping show a large chaotic sea surrounding KAMf the formalism, we nominate the following mappings that
islands and limited by a set of invariant tori. The descopti have already been studied:

of the phase transition is made by the use of scaling func- o o
tions for average quantities of the mapping averaged along ® ConsideringK (I,,1) = Iny1 + (I%,,, the logistic

the chaotic sea. The critical exponents are obtained via ex-  Wist mapping is obtained;

tensive numerical simulations. Given the mapping the-criti
cal exponents that characterize the scaling functionslare o
tained. Therefore classes of universality are defined.

We present and discuss some dynamical properties for ® K (Int+1) = 2/In41, then the Fermi-Ulam accelerator
a set of two dimensional Hamiltonian mappings. We as- ~ modelis obtained [1, 2];
sume that there is a two-dimensional integrable system that
is slightly perturbed. The Hamiltonian function that, inrpr
ciple, describes the system is written as

H(I1,12,6,,02) = Ho(I1,I2) + eH (11, 12,601,602) , (1) e Forthe case of

e K(I,11) = I,41, then the Taylor-Chirikov's map is
recovered;

e K(In41) = ¢In41, With ¢ constant, then the bouncer
model is found;

where the variableg; and6; with i = 1,2 correspond re-

: _ A Ty — 12y — ) if Ty > 1,
spectively to the action and angle. One can see clearly that K (Ip11) = { ¢ nia mH 42) AR

4C% 4 if Ty < L.

the control parametercontrols a transition from integrabil- ¢

ity to non integrability. To use the characterization of the ) (4)
dynamics in terms of a mapping, we can now consider a Wher_eg is a <_:onstant, then we recovered the so called
Poincaré section defined by the plahe< #; and assumé, Hybrid-Fermi-Ulam-bouncer model.

as constant (motlr). A generic two dimensional mapping
which qualitatively describes the behavior of (1) is

T - In+l = In + Eh(enu In+1)
Ont1 = [0n + K(Int1) + ep(On, Int1)] mod(2m) Tpy1 = |Tp + %575 | mod 1
(2) T . (yn+1) /
whereh, K andp are assumed to be nonlinear functions of

their variables while the index corresponds to theth it-  \yhereq andb and~ are the control parameters. The de-

eration of the mapping. The variablésand¢ correspond  terminant of the Jacobian matrix Bet J = sign(y, —

inde?d tol; ando, . ) ) bsin(27rx,,)) wheresign(u) = 1 if w > 0 andsign(u) = —1
Since the mapping (2) should be area preserving, the ex,, (.

pressions foh (0., I,+1) andp(0n, I.+1) have to obey some It is important to emphasize that there are two control pa-

properties, in particular some intrinsic relations. Thiafe rameters in mapping (5) that control the transition from in-

tions are obtained considering that the determinant ofdhe Jegrapility to no integrability, namely = 0 orb = 0. The

cobian _mgtrix is the unity. After some straightforward. al- phase space generated from iteration of the mapping (5) for
gebra, it is easy to conclude that area preservation will bg _ 9 andp — 10-3 is shown in Fig. 1.
observed only if the condition Now we concentrate to discuss some scaling properties
Op(On, Iny1)  Oh(On, Iny1) 3 present in the chaotic sea. The average quantity to be ex-
a0, Olnin =0, (3) plored is the deviation of the averagefor chaotic orbits,

In this work, we consider the following expression for the
two dimensional mapping [3]:

,

Yn+1 = |Yn — bsin(2ma,)|




0

X

Figure 1 — Phase space generated by the mapping (5) for the
control parameters,a = 2 and b = 1073

denoted as. In fairness, the behavior of shows the same
properties of the averagg It is defined as

w(n,a,b) = Z\/ylnab —72(n,a,b),  (6)

whereM corresponds to agnsemblef different initial con-
ditionsz; € (0, 1) randomly chosen for a fixegh = 1073
andy; is given by

7i(n,a,b) Zyﬂ. (7

Let us now discuss the behavior observed in Fig 2. The
curves start growing for smatl and after reaching a critical
crossover iteration number,,, they bend toward a regime of
convergence. Based on the behavior seen in Fig. 2(a) we can
suppose that:

e (i) For n <« n,, w grows according to a power law of
the type

W x (nbz)ﬁ , (8)
where( is a critical exponent;
e (ii) For largen, sayn > n,, the behavior o is
w o< a®th*?, (9)
wherea; andasy are critical exponents;

e (iii) The crossovem,, that characterizes the transition
of the growing regime for the saturation is

ngb? o< a*1b*2, (20)
wherez; andz, are called as dynamical exponents.

The critical exponents:;, az and the dynamical expo-
nentsz; and z; can be obtained from extensive numeri-
cal simulations. Firstly, fitting the initial regime of groly
we obtain that the criticaB =~ 0.5. We have obtained

o = —0.757(4), an = 0.607(1), z; = 1.162(5) and (d)

ay = 0.587(1). Since we have now obtained the critical ex-
ponents, the scaling hypotheses can be verified. In this case
it is shown in Fig 2(b) a merger of four different curves of

w generated for different values of the control parameters
andb into a single and universal plot. Finally, the critical
exponents could be used to define classes of universality and
compared to other kinds of transition observed in dynamical

The behavior ofv x n for different control parameters, as Systems.

labeled in the figure, is shown in Fig.2. However, similar

results would indeed be observed for other values twi.
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Figure 2 — (Color online) (a) Plot of differentw curves as func-
tion of n for different values of a and b for an ensemble of
M = 5000 different initial conditions. (b) Their collapse onto a
single and universal plot.

To summarize our conclusions, we have studied in
this work a phase transition from integrability for non-
integrability for a two dimensional Hamiltonian map. The
critical exponents were obtained via extensive simulation
and scaling hypotheses were all supported by a perfect col-
lapse of all the curves of the deviation around the average
guantities for the chaotic sea.
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