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Abstract: We consider a dissipative oval-like shaped billiardsuppressing FA. We therefore study the dynamics of an en-
with a periodically moving boundary. The dissipation con-semble of non interacting particles in a time-dependenit ova
sidered is proportional to a power of the velocityof the like shaped billiard. It is assumed that the particles expe-
particle. The three specific types of power laws used are: (ijience a drag force which is proportional to a power of the
F o —V; (i) F < =VZand (i) F o —V2with1 < § < 2.  particle’s velocity. The reflection law is not modified ane th
In the course of the dynamics of the particle, if a large ini-particles still keep moving along straight lines, as in stan
tial velocity is considered, case (i) shows that the decay oflard billiards. However, the velocity of each particle i ao
the particle’s velocity is a linear function of the number of constant anymore and decreases as the particle moves. De-
collisions with the boundary. For case (ii), an exponentiapending on the kind of damping force considered, the parti-
decay is observed, and for< § < 2, an power-like decay cles might eventually have all their energy dissipated]iteg
is observed. Scaling laws were used to characterize a phadem to reach the state of rest, thus stopping the dynamics.
transition from limited to unlimited energy gain for casés (  Our main goal in this paper is to investigate the process of
and (iii). The critical exponents obtained for the phasa-tra competition between the FA and dissipation of the particle
sition in the case (ii) are the same as those obtained for thenergy via a drag force. We specifically address the question
dissipative bouncer model. Therefore near this phase tramvhether FA is observed under the presence of the drag force
sition, these two rather different models belong to the samproportional to a power of the particle’s velocity. Our nume
class of universality. For all types of dissipation, theutess  ical results show convincingly that FA is suppressed, exen i
obtained allow us to conclude that suppression of the unlimthe regime of small dissipation. Particularly and depegdin
ited energy growth is indeed observed. on the type of damping force, the dissipation leads the par-
ticles to reach the state of rest. Recently, inelastic sioltis
have been considered in a time-dependent version of an oval
1. INTRODUCTION billiard and the results_co_nfir_m tha_t FA was also_suppr(_ess_ed
[8]. We have made a similar investigation in a driven eltipti
The famous phenomenon of Fermi acceleration (FA) [1billiard [9] which led also in suppressing FA. Additionally
was studied in various billiard-like models [2—5] where thenew Writing of the LRA Conjecture was proposed in Ref. [9]

boundary moves in time, i.e. it is time-dependent. The inThese results allow us to conjecture that FA is not a struc-
troduction of time dependence into the boundary yields theurally stable phenomenon.

particle to change energy upon collision. If the collisign i
head-on/tail-on then the particle gains/loses energy. Y ke2. RESULTS
qguestion addressed in studies on FA [1] is whether a parti-

; S . : The three different kinds of dissipation lead to suppres-
cle’s energy can grow to infinity. The answer to this question . . : :
) i, sion of Fermi acceleration. We concentrate to describe some
is not trivial and depends on the geometry of the boundar

and the kind of time perturbation. The Loskutov-Ryabov-¥Ca|mg transition for the model. We then discuss the behav-

Akinshin (LRA) conjecture [6] claims that if the dynamics lor of .the. average velocity of the particle when agiven aiiti
S . . . . velocity is very small compared to the maximum component
of the particle is chaotic while the boundary is static, thus . . .
. - . : of the moving boundary velocity. The behavior of the aver-
this is a sufficient condition to observe FA when a time PEr ve velocity as function of is shown in Fi 1(a). One can
turbation to the boundary is introduced. It has been showR? y 9: )

recently [7] that a time-dependent elliptic billiard casal clearly see that the average velocity starts growing forlsma

generate FA, therefore the answer could alsoyss“even n and then, after reaching a critical crossowgrit bends to-
for (some) in,tegrable billiards wards a regime of saturation, marked by a constant plateau.

In this paper, we are concerned with the mechanisms O@s the damping coefficient decreases, the average velocity
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Figure 2 — (Color online) Rescaled axis showing a single and
universal plot of three different curves of V. The control pa-
rameters used are labeled in the figure.

3. CONCLUDING REMARKS

Our results confirm that Fermi acceleration is suppressed
¥ ~ o gl when a dissipative force of drag-type is introduced in the dy
(b) 10 ﬁo 10 (C)lo 10 nlo 10 namics. A phase transition from limited to unlimited energy

growth was characterized.
Figure 1 — (Color online) (a) The average velocity as functio
of n for three different control parameters 7, as labeled in the ACKNOWLEDGMENTS

figure. The initial velocity used wasV, = 10~2 and the control EDL thanks support to FAPESP, CNPq, FUNDUNESP

parameters weree = 0.1,a = 0.1 andp = 3. (b) Plot of Viag x 7. X : _
A power law fitting yields the slopea = —0.5005(4). (c) Plot of andcomisséo MiSCAPES — FULBRIGHT.

ngz x 1. The slope obtained isz = —1.027(1).

[ Slope=-0.5005(4) &
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