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Abstract 
We study the synchronization of N nearest neighbors coupled oscillators in a ring. At synchronization, we 
always find two distinct quantities which characterize four of the oscillators, two pairs of nearest 
neighbors, only two of them have a phase difference of ±π/2. We use N-1 equations of the time evolution 
of the phase differences between neighboring oscillators to derive an analytic form for the phase difference 
among neighboring oscillators, which shows the dependency on the periodic boundary conditions. 
Therefore, we build a technique based on geometric properties and numerical observations to arrive to an 
exact analytic expression for the coupling strength, where synchronization occurs, as well as to directly 
point to the two oscillators that have a phase difference equal to |π/2|. 
 

 
keywords: Coupled Oscillators, Synchronization. 
 

Introduction : In recent years we have seen coupled 
oscillators to be used to understand the behavior of systems in 
physics, chemistry, biology, neurology as well as other 
disciplines, to model several phenomena such as: Josephson 
junction arrays, multimode Lasers, vortex dynamics in fluids, 
biological information processes, neurodynamics [1,2]. The 
oscillators in systems have been observed to synchronize 
themselves to a common frequency, when the coupling strength 
between oscillators is increasing [3]. The synchronization 
features of many of the above mentioned systems might be 
described using a simple model of weakly coupled phase 
oscillators such as the Kuramoto model [4,5] as well as its 
variations to adapt it for finite range interactions which are more 
realistic to mimic many physical systems. In this context, we 
present a simplified version of the Kuramoto model with nearest 
neighbors coupling in a ring topology, which is a good candidate 
to describe the dynamics of coupled systems with local 
interactions. Several reports exist where the Kuramoto model 
with nearest neighbor coupled oscillators in a ring has been used 
to represent the dynamics of a variety of systems, such as 
Josephson junctions, coupled lasers, neurons, chains with 
disorders, multi-cellular systems in biology and in 
communication systems [6]. 

 
MODEL:  The local model of nearest neighbor 

interactions is expressed as 

             ( )1sinsin −−+= iiii K φφωθ& ,              (1) 

with periodic boundary conditions iNi θθ =+  and phase 

difference iii θθφ −= +1  for Ni ,...,2,1= . The set of the 

initial values of frequencies {ωi} are the natural frequencies 
which are taken from a Gaussian distribution and K is the 
coupling strength. These nonidentical oscillators (1) cluster in 
time averaged frequency until they completely synchronize to a 
common value given by the average frequency 
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= ωω  at a critical coupling Kc as shown in Fig.(1). At 

the vicinity of Kc, major clusters of successive oscillators have 
sets of nearest neighbors at the borders. An interesting fact 
emerges: the phase-locked solution of |π/2| is always valid for one 
and only one phase difference, and this is the difference between 
the phases of the two oscillators at the border of the clusters [7].  

 
Figure 1 – Synchronization tree for 30 oscillators. The inset shows Hi 

vs i, where max{Zi} corresponds to Zℓ and min{Z i} to Zm. 

Figure (1) shows that the four oscillators, now labeled ℓ, 
ℓ+1, m, and m+1, at the borders of the major clusters in the 

vicinity of Kc, while Fig. (2) shows that )sin(
l

φ  and 

)sin( mφ are always the maximum and the minimum of the 

)sin( iφ  for all phase differences and only one of them satisfies 

the phase-lock condition. For any two neighboring oscillators, the 
equation for the time evolution of the phase difference is  

)sin()sin()sin(2 11 +− ++−∆= iiiii KKK φφφφ& ,     (2) 



Where iii ωω −=∆ +1 . At Kc, using equation (2), we arrive to 

           )sin()sin( Nciic KHK φφ +=                   (3), 

where, 
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Figure 1 – Selected values of )sin( iφ  at Kc for the system of 30 

oscillators of Fig. 1. 

Equation (3) shows that for the two oscillators which have 

1|)sin(| =jφ , the critical coupling Kc depends on Hj in 

addition to the periodic boundary conditions multiplied by Kc. 
However, it is not possible to determine directly the values of Kc 

and )sin( Nφ , or either 
l

φ  or mφ , where one of them satisfies 

the phase-lock condition |π/2|. It should be noted that for the 
case without periodic boundary condition (chain of free ends), 
the value of Kc = max{Hi}. Thus, according to (3), for the phase 

difference jφ  satisfies the phase-lock condition, the periodic 

boundary conditions decides finally the Kc, with max{|Hj|} ≠ Kc. 
Therefore, we decide to study the characteristics of the quantity 
Hi. We find that always the maximum and the minimum values 
of such quantity refer to the four oscillators which have phase 

differences 
l

φ  and mφ . As shown in the inset of Fig. (1), two 

distinct quantities are labeled Hℓ and Hm (a study for different 
numbers of oscillators and different sets of {ωi} shows the same 
behaviors for the quantity Hi). Two major cases can be identified 
depending on the maximum and the minimum of Hi. When Hℓ > 
0 and Hm.< 0, we find two sub-cases and only one of them 
decides the exact value of the critical coupling. These two sub-

cases are 1)sin( =lφ  with 1)sin( −>mφ , or 1)sin( <lφ  with 

1)sin( −=mφ . For the first sub-case, we use three equations of 

system (3) for l, l-1 and m, to get the sine law 
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(3), where the angles are 2/- N πφα += , 2/- m πφβ +=  

and 2/- πφγ +=
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, and the sides are 
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Figure 3- Triangle of known sides. 

After some trigonometric manipulation we get 
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value of the angle mφ . Thus the value of the critical coupling 

becomes: 
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second sub-case ( 1)sin( <lφ  with  1)sin( −=mφ ), we get 
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−−= . The value of the critical coupling in the case 

Hℓ > 0 and Hm < 0 is 
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Following the same method for the case Hℓ < 0 and Hm.> 0, we 

find: 
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critical coupling is given by equation (4). Table (1) shows good 
agreement between the results from numerical simulations of 
system (1) when compared to the values obtained from equation 
(4) for the same sets of initial frequencies.  

N Kc: simulation K c: equation (4) 
30 3.73094125 3.72862539 
50 4.48415639 4.47935214 
100 5.86827841 5.86639415 
200 7.96892973 7.95857428 

Table 1 – Values of Kc from simulation of (1) and from (4). 

Equation (4) allows us to determine whether 
l

φ  or mφ  has the 

phase-lock condition |π/2|. Determining such phase difference in 

addition to the value of Kc, we can determine the value of Nφ . 

Also, the following phase relations are satisfied at the stage of 
synchronization: 

1|)sin(|  a) =lφ , then  
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1|)sin(|  b) =mφ , then, 
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