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Abstract: Some dynamical properties for a classical parti-
cle confined in an infinitely deep box of potential containing
a periodically oscillating square well are studied. The dy-
namics of the system is described by a two dimensional non-
linear area preserving mapping for the variables energy and
time. The phase space is mixed. We will find the Lyapunov
exponents and show that the system has chaotic components.

Dynamical systems described by mappings have been
considered widely along the last years. In special and for the
most simple cases, i.e. for systems with1 and1/2 degrees
of freedom, that correspond to a time perturbation in a sys-
tem with one-degree of freedom, the description of Hamilto-
nian systems lead many times to two dimensional non-linear
area preserving mappings. Many different applications of the
formalism of two-dimensional area preserving mappings are
observed, particularly in the study of magnetic field lines in
toroidal plasma devices with reversed shear (like tokamaks)
[1], waveguide, Fermi acceleration, billiards and many others
generalizations.

The dynamics of the model is described by a two-
dimensional non-linear area preserving mapping for the vari-
ables energy and time. The phase space of the model is
of mixed type in the sense that Kolmogorov-Arnold-Moser
(KAM) islands are observed surrounded by a chaotic sea
which is characterized by a positive Lyapunov exponent. The
sizeof the chaotic sea depends on the control parameters and
is limited by a set of invariant tori (also called as invariant
spanning curves) which prevents the energy of the particle to
growth unlimited. Thus, if the law which controls the time
perturbation of the moving well is smooth enough, Fermi ac-
celeration (unlimited energy growth of the particle) is notob-
served.

The model consists of classical particle which is confined
inside a box of an infinitely deep potential which contains an
oscillating square well in the middle. A typical sketch of the
potential is shown in Fig. 1.

Figure 1 – Sketch of the potential considered.

The potentialV (x, t) is given by

V (x, t) =







∞, if x ≤ 0 or x ≥ (a + b)
V0, if 0 < x < b

2 or (a + b
2 ) < x < (a + b)

V1 cos(ωt), if b
2 ≤ x ≤ (a + b

2 )
,

(1)
where the control parametersa, b, V0, V1 andω are constants.

We can see that there are too many control parameters
which are not all relevant to describe the dynamics, five in
total, namelya, b, V0, V1 andω. Defining dimensionless
variables we obtainδ = V1/V0, r = b/a, en = En/V0,
Nc = ω/(2π) (a/

√

2V0/m) and measure the time in terms
of the number of oscillations of the moving well,φ = ωt.
With this set of new control parameters, the mapping is writ-
ten as

T :

{

en+1 = en + δ[cos(φn + i∆φa) − cosφn]
φn+1 = φn + i∆φa + ∆φb mod2π

, (2)

where the auxiliary variables are given by

∆φa =
2πNc

√

en − δ cos(φn)
, ∆φb =

2πNcr√
en+1 − 1

.

Since the determinant of the Jacobian matrix is equal to
the unity, the mapping (2) is area preserving. The phase
space of the model is mixed containing both KAM islands,
chaotic sea and invariant spanning curves, as one can see in
Fig. 2.



Figure 2 – (Color online) Phase space for the mapping (2). The
circles correspond to the elliptical fixed points while the crosses
denote the hyperbolic ones. The red (gray) color is used to the
first treatment and the blue (black) color to the second treat-
ment. The control parameters used werer = 1, Nc = 33.18

and δ = 0.5.

Let us now discuss our numerical results. We start the
discussion presenting the Lyapunov exponents characteriz-
ing the chaotic properties of the chaotic sea at low energy. It
is well known that the Lyapunov exponents are widely used
for the characterization of chaotic properties in dynamical
systems. Basically, the procedure to obtain the Lyapunov ex-
ponents consists in verify if two nearby initially trajectories
diverge exponentially for an infinitely long time. If the sys-
tem exhibits at least one positive Lyapunov exponent, then
it has chaotic components. The Lyapunov exponents can be
obtained by

λj = lim
n→∞

1

n
ln |Λj

(n)|, j = 1, 2 (3)

where Λj
(n) are the eigenvalues of the matrixM =

∏n

i Ji(ei, φi) andJi is the Jacobian matrix of our system.
It is shown in Fig. 3(a) a plot of the positive Lyapunov

exponent as function ofn for six different initial conditions
randomly chosen along the chaotic sea. The control param-
eters used werer = 1, Nc = 500 andδ = 0.5. After an
initial fluctuation, the positive Lyapunov exponent converges
to a constant value for large enoughn. It is also important
to obtain the behavior ofλ as function of the control param-
etersNc, r andδ. Figure 3(b) shows a plot of̄λ × Nc for
fixed r = 1 and δ = 0.5. One can see that the positive
Lyapunov exponent varies from̄λ ≈ 0.5 for Nc = 1 up to
λ̄ ≈ 2 for Nc = 103. It also has a monotonic tendency to
growth as function ofNc. Note however that increasingNc

corresponds to raising the number of oscillations of the well
and consequently increasing therandomnessof the system,
therefore leading to an increase in the Lyapunov exponent. A
plot of λ̄ × δ is shown in Fig. 3(c). The control parameters
used werer = 1 andNc = 33.18. One can also see that
small values ofδ, which correspond to very small fluctua-

Figure 3 – (Color online) (a) Time evolution of the positive Lya-
punov exponent for six different initial conditions evolved up
to 5 × 10

8 times. The control parameters used werer = 1;
Nc = 500 and δ = 0.5. (b) Plot of λ̄ × Nc for fixed r = 1 and
δ = 0.5. (c) Plot of λ̄ × δ for fixed r = 1 and Nc = 33.18. (d)
Plot of λ̄× r for fixed Nc = 33.18 and δ = 0.5.

tions of the oscillating square well produce a large Lyapunov
exponent. A minimum value of̄λ ≈ 1.4 was observed for
δ ≈ 0.2. Finally, a plot ofλ̄ × r is shown in Fig. 3(d) for
fixed δ = 0.5 andNc = 33.18. Since the control parameter
r = b/a, enlargingr for a fixedNc corresponds to enlarging
b thus increasing the distance from the well up to the box of
potential. Such an increase leads to a long flight of the parti-
cle until next entrance in the oscillating square well therefore
yielding in an increase of the number of oscillations of the
moving well and consequently increasing therandomnessof
the system. The sudden jumps in the behavior of the Lya-
punov exponent are explained as the destruction of invariant
spanning curves leading to a joint of different chaotic regions
(see for example Ref. [2] for a discussion in Fermi-Ulam
model and Ref. [3] for time dependent square well).
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