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This  work  presents  an  analysis  of  the  original  Hodgkin-
Huxley (HH) model  in  a  non-smooth (rectangular  pulses) 
excitation scenario and also a method to search for specific 
oscillating patterns in this dynamical system. The analysis is 
based  on  a  classical  qualitative  method  given  by  the 
bifurcation  diagram and on  the  calculation  of  the  system 
Lyapunov  spectrum.  This  calculation  was  carried  out  by 
means  of  a  modified  algorithm particularly suited to  deal 
with  the  non-smoothness  and  complexity  of  the  state 
equations. The obtained Lyapunov exponents are then used 
to build a cost function for seeking pre-defined dynamical 
patterns  that  is  optimized  using  the  particle  swarm 
optimization algorithm.

In [1] and [2], Soriano et al. proposed and tested a method 
(called cloned dynamics - ClDyn) to perform the analysis of 
the  stability  of  dynamical  systems  by  calculating  their 
Lyapunov  spectrum  without  the  need  for  a  linearization 
process, which is particularly attractive for dynamics with a 
complex  mathematical  description  and/or  discontinuous 
inputs. In simple terms, the ClDyn approach is based on the 
idea of analyzing the evolution of difference state vectors 
defined as the distance from the original (fiducial) trajectory 
and the clones of the motion equations initially disturbed by 
small  values  in  orthogonal  directions.  The  whole  system, 
which  comprises  the  original  motion  equations  and  the 
clones,  is  numerically  integrated  for  a  brief  interval,  and 
then the different state vectors are updated and corrected by 
using the same correcting procedure present in the classical 
method  to  perform  Lyapunov  spectrum  calculation,  the 
Gram-Schmidt Reorthonormalization (GSR) [3].  The local 
divergence  (or  convergence)  is  computed  to  evaluate  the 
local  Lyapunov  spectrum,  and,  finally,  the  clones  are 
displaced in the neighborhood of the fiducial trajectory to 
restart the integration procedure, which defines an iteration 
of the algorithm. The whole procedure stops only when a 

representative  number  of  iteration  captures  the  average 
divergence  rate  of  initially  close  trajectories  in  the  phase 
space for the whole attractor. Details can be found in [1] and 
[4].

Using  this  approach,  the  Lyapunov  spectrum  of  the 
emblematic HH model was calculated under the excitation 
of  a  rectangular  train  of  pulses,  a  situation  closer  to  the 
canonical experimental procedures, or, at least, closer to the 
mathematical representation of experiments. In fact, action 
potentials are commonly evoked by abrupt stimulation (e.g. 
step currents or rectangular pulses) as usually employed in 
patch clamp experiments and in experiments to evaluate the 
refractory period or to obtain the strength vs. duration curve 
for excitable cells [5, 6].
Figure  1  shows  the  bifurcation  diagram  and  largest 
Lyapunov exponent (λ1) obtained for the original HH model 
under excitation of a rectangular train of pulses taking the 
amplitude (A) of excitation as control parameter and fixing 
its period (T) in 7 ms with duty cycle of 50 %. 

Figure 1: The upper panel shows the bifurcation diagram built by 
sampling the membrane potential V every time that m = 0.05 taking A 
as control parameter with a step size of 10-4. The lower panel shows the 

λ1 for the same range of A with step size of 2.5⋅10-4.



As chaotic systems exhibit at least one positive Lyapunov 
exponent, the lower panel of Figure 1 reveals the presence 
of chaos in the HH model for a significant range of A, which 
is  in  perfectly  agreement  with  the  qualitative  behavior 
captured  by  the  bifurcation  diagram  (upper  panel). 
Moreover, after exposing the wealth of dynamical behaviors 
in  this  neuronal  model,  it  becomes  possible  to  seek  for 
specific  oscillating  patterns  by  defining  a  reference 
Lyapunov  spectrum  on  a  cost  function  that  can  be 
minimized under different model parameters. For instance, 
Eq. (1) describes a cost function to be optimized under the 
membrane (sodium and potassium, respectively, GNa and GK) 
conductance parameters:
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where λi, i = 1, …, n are the reference Lyapunov exponents, 

iλ̂ , i = 1, …, n are the estimated Lyapunov exponents.  Let 
us take,  as an illustration,  the Lyapunov spectrum for  the 
original HH model (which implies  GK = 36 and  GNa = 120 
mS/cm2) and A = 6 as a reference. It is possible to change A 
from 6 to 7.3 (which would turn the chaotic behavior into 
that  of a limit  cycle,  as can be seen in Figure 1) without 
changing the chaotic oscillating characteristics if the model 
parameters GK and GNa are changed in order to minimize the 
cost function defined in Eq. (1). As the surface defined by 
this equation is highly multimodal, an alternative method to 
perform the optimization is required, since the derivatives 
required  by  classical  gradient-based  approaches  would  be 
quite  difficult  to  obtain  and  these  approaches  are  not 
particularly suited to perform global search. In this case, we 
decided  to  employ  a  bio-inspired  optimization  method 
known as particle swarm [7], which possesses a significant 
global  search potential  and does not require cost  function 
manipulations. 

The upper panel in Figure 2 shows the reference time series 
obtained for  A = 6,  GK = 36 and  GNa = 120, and the time 
series obtained by using the parameters GK and GNa found by 
the optimization algorithm when A is changed to 7.3. It can 
be noted that the effect on the oscillating pattern that would 
be generated by the change in A can be compensated by the 
change  in  conductance  parameters.  Obviously,  as  both 
systems are  chaotic,  the  time series  are  not  identical,  but 
they  have  similar  statistical  properties  (probability 
distribution, mean, standard variation), and, more than that, 
are very close in the phase space (lower panel – Figure 2), 
something that can be very useful for control purposes.     
Using  this  approach,  not  only  periodic  orbits  can  be 
degenerated into chaotic behavior changing the membrane 
characteristics, but also chaotic trajectories can be stabilized 
into periodic oscillations. This occurs, for instance, when we 
take the reference Lyapunov spectrum produced when  A = 
7.3,  GK = 36,  GNa = 120 (that leads to a limit cycle),  and 
optimize  the  systems  under  A =  6  (which  implies  in  a 
chaotic behavior for the original HH parameters) to achieve 
the  desired  periodic  oscillation  by  changing  membrane 
characteristics to GK = 30.3 and GNa = 128.9.

Figure 2: The upper panel shows the reference time series obtained 
when (A = 6, GK = 36, GNa = 120) and the time series obtained after 

setting the conductance parameters by the optimization process when 
A = 7.3. The lower panel shows the phase portrait for h and n state 

variables for the reference and obtained solutions.

In simple terms, it can be said that the central contribution 
of this line of research is to present means to analyze and 
seek  for  specific  oscillating  patterns  avoiding  the 
manipulation  (e.g.  differentiation)  of  the  state  equations, 
which was done by modifying the classical way to perform 
the Lyapunov spectrum calculation, and by the use of a bio-
inspired metaheuristic method.
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